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A B S T R A C T

This work details the coupling of a Smoothed Particle Hydrodynamics (SPH) fluid solver with a general-purpose
Differential Variational Inequality (DVI) based non-smooth multibody dynamics solver, allowing for efficient
and accurate modeling of fluid-mechanism interactions, an ubiquitous scenario in natural and industrial settings.
The SPH fluid model (DualSPHysics) can deal with flow non-linearities, free-surface and intense topological
changes, while the non-smooth dynamics model (Project Chrono) deals with discontinuous frictional contacts
and kinematic restrictions. An open-source integrated framework to model fluid–structure–structure coupled
systems is presented by implementing Project Chrono under DualSPHysics.

The model is validated with fluid–structure–structure interaction cases. Both frictional and multi-restriction
based behaviors are tested and simple convergence analysis are presented, showing that the model is capable of
reproducing complex interactions. Several hypothetical cases are then presented, in order to demonstrate pos-
sible applications, showcasing a wide set of options useful for practitioners requiring the use of advanced fluid-
mechanism models.

1. Introduction

Devices composed of rigid bodies interacting through frictional
contacts and several nonlinear constraints are extensively used in many
engineering fields, either featuring a small number of unilateral con-
tacts or including thousands of contacts between a large number of
parts. Mechanisms involving contacts and impacts between parts can be
modeled in terms of multi-body systems with unilateral constraints. The
simulation of rigid contacts entails the solution of non-smooth equa-
tions of motion: the dynamics are non-smooth since the non-inter-
penetration, collision, and adhesion constraints are discontinuous [1].
The interaction of these types of mechanisms with fluid flow is widely
seen in fields such as offshore engineering, fabrication processes,
coastal protection and renewable energy production.

Smoothed Particle Hydrodynamics (SPH) is becoming a mature tool
regarding environmental free-surface flows. It treats unsteady and non-
linear features, extreme deformations and complex topological evolu-
tions, such as a breaking free-surface, implicitly and with sufficient
accuracy to provide meaningful solutions to engineering problems.
Considerable advantages when computing interactions between objects
or structures and a flow [2] are also met. High-performance computing

advances have allowed the method to cover applications once reserved
to specialized models, opening new possibilities in modeling even fur-
ther complex phenomena. Using the same developments in computing
and the introduction of accessible parallel computing solutions, very
efficient solutions are found for non-smooth multi-body systems. Con-
sidering the success of SPH for fluid descriptions and non-smooth multi-
body solvers for mechanical systems, attempting to couple both under a
generalized framework should provide new simulation possibilities, by
leveraging the strengths in both methods.

In this work the DualSPHysics code [3] is augmented with the
Project Chrono library [4], developed as a general-purpose simulation
framework for multi-body problems with support for very large sys-
tems. The library is implemented under the DualSPHysics code, pro-
viding an integrated interface to define and run arbitrarily defined
fluid–structure–structure coupled systems. Our implementation allows
for the straightforward definition of constraints such as joints (sphe-
rical, hinged and full restriction) and sliders (along an axis), combi-
nations of these (hinged slider for example) with arbitrary degrees of
freedom, i.e., such restrictions can be set between two bodies that are
otherwise unrestricted. The main contribution however is the efficient
treatment of such kinematic restrictions with user defined dynamic

https://doi.org/10.1016/j.apor.2018.04.015
Received 21 December 2017; Received in revised form 27 March 2018; Accepted 27 April 2018

⁎ Corresponding author.
E-mail addresses: ricardo.canelas@tecnico.ulisboa.pt (R.B. Canelas), moises.brito@tecnico.ulisboa.pt (M. Brito), orlando@uvigo.es (O.G. Feal),

jmdominguez@uvigo.es (J.M. Domínguez), alexbexe@uvigo.es (A.J.C. Crespo).

Applied Ocean Research 76 (2018) 88–97

0141-1187/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01411187
https://www.elsevier.com/locate/apor
https://doi.org/10.1016/j.apor.2018.04.015
https://doi.org/10.1016/j.apor.2018.04.015
mailto:ricardo.canelas@tecnico.ulisboa.pt
mailto:moises.brito@tecnico.ulisboa.pt
mailto:orlando@uvigo.es
mailto:jmdominguez@uvigo.es
mailto:alexbexe@uvigo.es
https://doi.org/10.1016/j.apor.2018.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apor.2018.04.015&domain=pdf


properties such as friction and restitution coefficients, restitution forces
from spring and damper systems and user-imposed forces and trajec-
tories.

The aim of this paper is to explore the DualSPHysics implementa-
tion of Project Chrono for modeling of interactions between fluid and
rigid bodies systems, with arbitrary mechanical restrictions applied.
The fluid implementation on DualSPHysics represents the current state-
of-the-art in balancing computational efficiency and numerical accu-
racy, while maintaining the necessary degree of generality for users and
researchers. More accurate particle approximation schemes have been
introduced such as Incompressible SPH [5] and CRKSPH [6] among
various others. Applicability to large and complex problems is limited
however, hence they are not considered currently. The work presented
is agnostic to the fluid discretization method, as well as the particulars
of the fluid–solid coupling.

In Section 2 the conceptual and numerical models used for the fluid
description are reviewed, mapping the equation systems underlying the
DualSPHysics implementation of SPH. Section 3 introduces the con-
cepts for the non-smooth multi-body dynamics model and the Differ-
ential Variational Inequality (DVI) equation system. Section 4 details
the validation cases of the fluid-mechanism solver, using three re-
ference experimental results. Following the validation cases, Section 5
showcases the potential of the model via a selection of cases were non-
linear flows drive and interact with complex mechanisms. Conclusions
are drawn in Section 6, by discussing the validation results, the us-
ability and attractiveness of the model from a practitioner standpoint
and the future developments.

2. Smooth-Particle-Hydrodynamics (SPH)

In SPH, the fluid domain is represented by a set of nodal points
where physical quantities such as position, velocity, density and pres-
sure are approximated at. These points move with the fluid in a
Lagrangian manner and their properties change with time due to the
interactions with neighboring nodes. The term Smoothed Particle
Hydrodynamics arises from the fact that the nodes, for all intended
means, carry the mass of a portion of the medium, hence being easily
labeled as “particles”, and their individual angular velocity is dis-
regarded, hence “smooth”. The method relies heavily on integral in-
terpolant theory [7]. An approximation to discrete Lagrangian points
can be made, by a proper discretisation of the continuous integral by

∑≈ rA A W h V( , ) ,i
j

j jij
(1)

called the summation interpolant, extended to all particles j,
|rij|= |ri− rj|≤ ϵh, where Vj is the volume of particle j, Ai is the ap-
proximated variable at particle i and W is the weight, or kernel, func-
tion. The summation approximation implies that particle first order
consistency, i.e., the ability of the kernel approximation to reproduce
exactly a first order polynomial function, may not be assured, since the
approximation error is inherent to the discrete form

∑ ≈rV W h( , ) 1
j

j ij
(2)

may be large. This typically occurs near open boundaries or other dis-
continuities, where the kernel W does not satisfy compact support.
Mitigation may be considered, as the Shepard and MLS corrections. In
the work of [8] spatial gradients are computed using the gradient of the
kernel function.

A Quintic [9] kernel is employed in this work:

= − + ≤ ≤( )rW h α q q( , ) 1 (2 1), 0 2,D
q

ij 2

4

(3)

where q=|rij/h| and αD=21/16πh3, for a 3D case. The choice of
kernel function weights on the quality of the solutions [10], with the
Quintic kernel being recognized as a good choice for general free-

surface problems [11].

2.1. Equations of motion in SPH

The proposed SPH formulation relies on the discretisation of the
Navier–Stokes and continuity equations. Written for a variable density
and neglecting the divergence of the velocity field, these are


= − + +v v gd p

ρ
μ
ρdt

2

(4)

= − v
dρ

ρ
dt

, (5)

where v is the velocity field, p is the pressure, ρ is the density and μ and
g are the kinematic viscosity and body forces per unit mass, respec-
tively. The system is written in such a way as to avoid solving a Poisson
equation, using p= f(ρ) [12], using a weakly compressible formulation.
The continuity equation is discretised as

∑= − +v v r
dρ

m W h
dt

( )· ( , ) Φ ,i

j
j i j iij

(6)

where mj is the mass of particle j and Φi is a diffusive term [13], de-
signed to stabilize the density field from high-frequency oscillations,
written as
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where δ is a free parameter and c0 is the numerical sound velocity. The
discretised version of Eq. (4) [14] can be written as

= − ∑ ⎛
⎝
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+ +
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p p
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The first term of the right side is a symmetrical, balanced form of the
pressure term [7]. The second term represents viscous stresses, given by
either an artificial viscosity formulation [7], or a laminar [15] and a
sub-particle-scale (SPS) stress [16].

Following [7], the commonly used relationship estimate between
pressure and density is Tait's equation
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where ρ0 is a reference density and γ=7 for a fluid like water. Ac-
cording to Eq. (9), the compressibility of the fluid depends on c0, in
such a way that for a high enough sound celerity the fluid is virtually
incompressible. However the value of c0 in the model should not be the
actual speed of sound, as the stability region is defined by
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where C is the Courant number, a constant of the order of 10−1 [10].
The first term results from the consideration of force magnitudes and
the second is a version of the classical CFL condition. This expression
takes into account numerical information celebrities and a restriction
arising from the viscous terms [10]. If the sound celerity in the simu-
lation is too high, it will render Δt very small and the computation more
expensive. c0 is kept to an artificial value of around 10 times the
maximum flow speed, restricting the relative density fluctuations at less
than 1% [7]. As a consequence, the estimated pressure field given by
Eq. (9) usually shows some instabilities and may be subject to erroneous
distributions. The δ-SPH diffusive terms contribute to the density field
and smooth most of the high frequency oscillations.
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2.2. Coupling rigid body dynamics and SPH

Rigid bodies are sub-sets of SPH particles whose variables are in-
tegrated in time with a different set of equations. Newton's equations
for rigid body dynamics in the domain frame reference are used, and
the discretization consists of summing the contributions from each SPH
node, as

∑=
∈

V vM d m d
dt dtI

I

k I
k

k

(11)

∑= − ×
∈

I Ω r R vd m d
dt

( )
dt

,I
I

k I
k k I

k

(12)

where body I possesses a mass MI, velocity VI, inertial tensor II, angular
velocity ΩI and center of gravity RI. The vectorial quantities are com-
puted at every time step. m v

k
d
dt

k is the force by unit mass applied to
particle k, belonging to body I. This force encompasses body forces
(gravity) and fluid resultants. Fig. 1 details the 3 interaction types ac-
counted for in this work.

Both interactions 1 (between fluid particles) and 3 (between fluid
and boundary solid particles) are computed with Eq. (8). The model can
be seen as an application of the Dynamic Boundary Conditions [17,2],
where the boundary is made to additionally follow Eqs. (11) and (12).
No ad-hoc terms are added, since all the dynamics are a result of the
fundamental, particle-wise, solution of Eqs. (11) and (12). Interaction 2
is detailed in Section 3, taking place over the mesh that encompasses
the boundary solid particles of each body.

The fluid–solid formulation was detailed in [2], where it was

validated regarding buoyancy effects including free-surface deforma-
tion and penetration. Later works included rigid body interaction with
waves and mooring lines [18] and the extensions for the Distributed
Contact Discrete Element Method (DCDEM) [19] previously im-
plemented in DualSPHysics.

3. Non-smooth multi-body dynamics model

Section 2 lays the fundamental ideas behind the modelling of the
fluid phase and the modelling of otherwise unconstrained floating rigid
bodies. Mechanisms to cope with interactions between rigid bodies and
other constraints need to be explored. The ideas laid by [20] and later
adapted by [19] represent traditional regularization strategies, which
model contacts and other restrictions by means of spring-dashpot sys-
tems (DEM class methods). From a SPH implementation perspective,
this approach requires small code adaptations and allows the adoption
of already used integrators. The high stiffness affecting the explicit in-
tegration, however, typically imposes prohibitively small time steps to
ensure stability and guarantees the need to tune parameters [21]. These
issues motivate the search for methods that can deal with multiple
frictional restrictions, even in cases with thousands or millions of
moving bodies. To that end, much attention was drawn by time-step-
ping approaches that produce weak solutions of the DVI that describes
the continuous time motion of rigid bodies with collision, contact, and
friction, as those applied in Project Chrono. The DVI as a problem
formulation was recently introduced in full generality and classified by
differential index [22], though earlier numerical approaches based on
DVI formulations do exist. On the following subsections, a DVI de-
scription is built by defining the notation space, writing constraints that
represent physical characteristics of the system and finally writing the
full equation system.

3.1. System representation

At a time t, the position of the system is described by generalized
coordinates ∈q t( ) ℝm (which may include rotational coordinates that
cannot be defined over a subspace homeomorphic to ℝn, for some n),
and generalized velocities ∈v t( ) ℝm. In classical mechanics, v t( ) is
continuous, and we can write =q Γ q vd /dt ( ) , where Γ(q) is used to
transform the generalized velocities into derivatives of the generalized
positions. For instance, when dealing with rotations, Γ(q) can be a
linear mapping from three dimensional angular speeds into four di-
mensional time derivatives of unit quaternions. Four-dimensional uni-
tary quaternions are adopted, ∈ ⊂η t S( ) ℍ3 , though their space is not

Fig. 1. Coupling scheme of a fluid and rigid body description.

Fig. 2. Platform experimental set up scheme. Dimensions in mm [28].
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homeomorphic to ℝ3. This allows the position vector as
=q x η x η{ , , , , ...}T T T T

1 1 2 2 and the velocity vector as
=v ẋ w ẋ w{ , , , , ...}T T T T

1 1 2 2 . Therefore a system with n bodies in three
dimensions is represented by mp=8n position and ms=6n speed co-
ordinates.

3.2. Non-penetration constraints

Two rigid bodies should not penetrate, and, if they are in contact,
there should be friction acting at the interface. To enforce the non-
penetration constraint, we assume that there exists a function Φ(q),
which we call the gap function, that satisfies

=
⎧
⎨
⎩

>
=
<

qΦ( )
0 If the bodies have no intersection
0 If the bodies are in contact
0 If the bodies intersect (13)

For such a function, the non-penetration constraint becomes Φ(q)≥ 0.
An example of such a mapping is the signed distance function, which is
differentiable when the bodies are smooth and convex, at least up to
some value of the interpenetration [23]. For most cases, even simple
ones involving the relative position of two spheres, a differentiable

Fig. 3. Rotation angle for h0= 250mm. Experimental (avg – average; std – standard deviation) and numerical results.

Fig. 4. Rotation angle for h0= 300mm. Experimental (avg – average; std – standard deviation) and numerical results.

Fig. 5. Rotation angle for h0= 350mm. Experimental (avg – average; std – standard deviation) and numerical results.

Table 1
RMSE for h0= [250 300 350] mm, SPH-DEM, SPH-DVI.

h0 DEM (H/
Dp=4)

DVI (H/
Dp=3)

DVI (H/
Dp=6)

DVI (H/Dp=12)

250mm 1.448 1.146 0.965 0.901
300mm 0.777 0.502 0.469 0.309
350mm 0.941 1.188 1.276 1.355
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signed distance function cannot be defined for all values of q. The fact
that Φ(q) can be differentially defined only in a neighborhood of the set
Φ(q)≥ 0 can be accommodated at the cost of making the analysis
substantially more involved [24], prompting the following assumption:
any contact is described by a gap function Φ(q) that is everywhere C2.

3.3. Frictional constraints – the Coulomb friction model

The model we represent and approximate is the Coulomb friction
model. If a position q is feasible and the contact is active, that is,
Φ(q)≥=0, then at the contact we have a normal force and a tangential
force. Let n be the normal at the contact, pointing toward the exterior of
the body, and let t1 and t2 be the tangents at the contact such that n, t1
and t2 are mutually orthogonal vectors of unitary length and a function

of the position q. Let v to refer to velocities, and the subscripts 1 and 2
to refer to quantities related to the two linearly independent tangential
directions at a given contact. The reaction force is impressed on the
system by means of multipliers γn, γv1 and γv2. The normal component of
the force is Fn= γnn and the tangential component of the force is

= +F t tγ γt v v1 21 2 . The Coulomb model consists of the following con-
straints:

≥
≥

=

≥ +

− + =

= −

q
q

V
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γ

γ

μγ γ γ

μγ γ γ

0
Φ( ) 0
Φ( ) 0

|| ||( ) 0

, || || || ||

n

n

n v v

t n v v
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2 2

2 2

1 2
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(14)

where Vt is the relative tangential velocity at contact. The first part of
the constraint can be restated as

= + = + + ∈F F F n t tγ γ γn t n v v1 21 2 (15)

where  is a cone in three dimensions, whose slope is arctan(μ). The
constraint 〈Ft, Vt〉=− ||Ft|| ||Vt|| requires that the tangential force be
opposite to the tangential velocity. This results in the reaction force
being dissipative. In fact, an equivalent convenient way of expressing
this constraint is by using the maximum dissipation principle [25]

= ++ ≤ ( )t t Vγ γ γ γ( , ) argminv v γ γ μγ v v
T

t1 2
v v n1 2 1
2

2
2 1 2 (16)

These constraints are represented by mapping vectors n, t1 and t2
from contact coordinates to generalized coordinates. For example, if we
have a two-body system, then the generalized coordinates in the three-
dimensional space are embedded in a 12-dimensional space by using
the coordinates x1, y1, z1, ϕ1, Θ1, ζ1, x2, y2, z2, ϕ2, Θ2, ζ2. For a three-
dimensional vector v, the mapping to generalized coordinates is given
by

→
⎛

⎝

⎜
⎜

×
−

− ×

⎞
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⎟
⎟
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v
v

v
v

r

r
,1

2 (17)

where r1 and r2 are the relative positions of the contact point with re-
spect to the centers of mass of the two bodies. Using this mapping, we
denote the generalized vector version of n, t1 and t2 by Dn, D1, D2. One
unfortunate side effect of generalized coordinates mapping is that, in
the new coordinates, Dn, D1, D2 cease to be mutually orthogonal. If u is
the generalized velocity, the tangential velocity satisfies the following

= =t V D t V Du u,T
t

T T
t

T
1 1 2 2 (18)

In generalized coordinates, the Coulomb model can now be written
as

=
= +
≥ ≥ =

≥ +

= ++ ≤ ( )
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D D
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2
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3.4. Complete non-smooth multi-body dynamics model

The other dynamical data needed for the model are the mass matrix
M(q) and the external force f q vt( , , )e . The mass matrix ∈ ×M q( ) ℝm m

is positive definite and constant. Assuming now that we have p poten-
tial contact constraints, which are enforced by the nonpenetration
constraints Φi(q)≥ 0, i=1, 2, .. ., p. The superscript i denotes the data
associated to the potential contact i. The continuous model is the fol-
lowing differential variational inequality [26]

Table 2
Computational cost for h0= [250 300 350]mm, SPH-DVI.

h0 H/Dp=3 H/Dp=6 H/Dp=12

Million
particles

Time (s) Million
particles

Time (s) Million
particles

Time (s)

250 1.88 14852 14.92 118689 105.31 787156
300 2.23 20571 17.66 159152 125.34 1423304
350 2.54 25357 20.41 204875 146.04 1580491

Fig. 6. Spring pendulum (left) and gravity pendulum (right). Dimensions in m.

Fig. 7. Comparison between numerical and experimental [29] rotation angle of
gravity pendulum in air and water.

R.B. Canelas et al. Applied Ocean Research 76 (2018) 88–97

92



=

= ∑ + + +

≥ ⊥ ≥ = …

= +

= …

=

+ ≤ ( )

Γ q v

M D D D f q v

q

D D

γ γ γ t

γ i p

γ γ γ γ u

i p

( )

( ) ( , , )

0 Φ ( ) 0, 1, 2, ,

( , ) argmin ,

1, 2, ,

q

v
e

d

d
i
p

n
i

n
i

v
i i

v
i i

n
i i

v
i

v
i

γ γ μ γ v
i i

v
i i T

dt

dt 1 1 2

1 2
v
i

v
i i

n
i

1 2

1 2 1
2

2
2 1 2

(20)

System (20) must be discretized for use in our numerical model.
Casting the system in Cone Complementary Problem (CCP) form and
solving it with a fixed point iterative method allows for the expected
performance levels, while taking advantage of the DVI capabilities in
describing generalized restrictions. The full discretization can be seen in
Project Chrono's reference papers, [27,4].

4. Validation cases

4.1. Platform wash-out by dam break

A simply supported platform is exposed to a dam break flow,
leading to the collapse and partial transport of the structure by the flow.
[28] presented experimental data for such a scenario and compared it
with an SPH-DEM coupled model.

The case consists of three different initial water depths: h0= {250,
300, 350}mm. The simply supported platform has a density of
ρ=1.161 kg/m3 and is made of PLA plastic, with a restitution coeffi-
cient e=0.8 and friction coefficient to the supports μ=0.05. Fig. 2

details the set-up.
The SPH-DVI simulations were conducted on the same domain, at

the same scale. Resolution ranged as H/Dp={3, 6, 12}, where H is the
height to the platform (20mm). Artificial viscosity [7] with α=0.01
was used and the δ-SPH parameter was set to δ=0.1. Figs. 3–5 show
the rotation angle of the supported block on the axis normal to the flow
direction, compared to the experimental and the SPH-DEM solutions
from [28], taken with H/Dp=4, where Dp is the initial particle spa-
cing.

The frictional nature of the support problem is well reproduced by
the exact Coulomb model of Eq. (19), as well as the subsequent motion
of the platform. The times for movement initiation are consistent, as are
the angle inversion times. Minor differences are noted for increased
resolution, indicating that solid–fluid coupling is robust, as well as a
proper decoupling of the solid–solid problem from the fluid–solid
model, resolution wise. Regarding the comparison with the DEM re-
sults, Table 1 shows the root mean square error (RMSE) for the three
cases and the four solutions.

Overall the error is comparable for similar resolutions and decreases
with increased resolution, sub-linearly. Besides the greater accuracy,
the DVI model has two more advantages: (I) it effectively decouples the
solid–solid interaction from the fluid resolution, arguably the most
expensive part of the solution and (II) it has a much larger stability
region than explicit DEM models, allowing for larger time-steps.

The computational time is relative to the available machine, in this
case an Nvidia P100 GPU card was used along an Intel Xeon E5, al-
lowing for large number of particles to be stored. Table 2 shows the
computational time and particle numbers for the presented case.

The computational time is the same for a case with no DVI model
enabled, i.e., the cost of the DVI solution is negligible.

4.2. Pendulums in viscous fluids

A set of pendulum experiments were recovered from [29] in order to
characterize of the SPH-DVI solutions regarding fluid-mechanism in-
teractions, i.e. structures with relative internal restrictions. The tests
consist of optically tracking a submerged PVC cube with a protruding
rod. The cube side is L=0.06m and the rod extends 0.20m from the
cube center, with a 23.5×2mm cross section, resulting in a total
system mass of 0.29 kg.

The system can be set-up with either a hinge (gravity pendulum) or
a spring (spring pendulum) at the top of the rod as shown in Fig. 6,
producing rotational (around the xy axis) and translational motion
(along the y axis), respectively, once the mechanism is excited.

The simulations were carried with a 1:1 scale, using δ=0.1 for the
δ-SPH model and ν=10−6 for the viscosity employed in the

Fig. 8. Comparison between numerical and experimental [29] motion ampli-
tude of a spring pendulum in air and water.

Fig. 9. Left – Comparison between numerical and experimental [29] motion amplitude of a spring pendulum in water. Right – Convergence analysis for Dp=[15, 50,
100, 150, 200].
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Laminar+ SPS model. The air phase is not modeled by the SPH+DVI
approach. Fig. 7 shows the angular rotation of the gravity pendulum in
air and water.

The gravity pendulum presents a 1.073 Hz natural frequency in air,
with a 1.73×10−3 damping ratio. The effectiveness of the DVI ap-
proach is demonstrated by exactly reproducing frequency. The

amplitude shows a deviation from the experimental results: the motion
damping introduced by air resistance and friction at the hinge is not
characterized by [29] and hence not modeled. The DVI solution pre-
sents a negligible damping ratio (∼10−6), possibly due to machine
precision. The introduction of fluid promotes a higher energy dissipa-
tion, resulting in a lower natural frequency and increased damping
ratios. The SPH-DVI solution is shown to converge to the experimental
solution, with approximately 7% error in amplitude and 6% error in
frequency for a resolution of L/Dp=200.

The spring pendulum uses a spring with a stiffness of 8.72 N/m,
resulting in a 0.874 Hz frequency, with a 0.681× 10−3 damping ratio
in air. Fig. 8 compares the normalized experimental and SPH-DVI re-
sults.

The solution for the air case is again accurate in both amplitude and
frequency, apart from the damping. Results for the submerged case
show good agreement for the most resolved case, with L/Dp=200.
Fig. 9 details the effects of varying resolution and shows a convergence
analysis.

Approximately linear convergence is expected by the SPH method
[30]. The convergence analysis in Fig. 9 shows, for a limited resolution
bandwidth, two regions with sublinear and superlinear convergence
rates. Given the characteristics of the problem, this is to be expected:
major flow structures such as eddies largely contribute to systems re-
sponse. These may be under-resolved for resolutions much lower than
their spatial scale, and the case under scrutiny presents a given sig-
nificant eddy size, relatable to the local Reynold number. Above a given
cut off resolution, these now resolved structures greatly contribute for
the convergence of the results. The dissipative nature of the SPH

Table 3
Computational cost for H/Dp=[15 100 200].

H/Dp Million particles Time (s)

15 0.05 212
100 15.63 59684
200 125.48 478972

Fig. 10. WaveStar DualSPHysics simulation.

Fig. 11. WaveStar buoy vertical force and torque response with no PTO.
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method [7] implies that high resolution is necessary to fully recover the
correct damping ratios, with multi-resolution schemes [31] being im-
portant to offset the computational cost for larger applications. Table 3
details the said cost, for the described reference machine.

5. Demonstration cases

In order to demonstrate the versatility of the DualSPHysics im-
plementation of Project Chrono, three demonstration cases are pre-
sented. These explore different types of restrictions (spherical, hinged)
and varied conditions, with relative and absolute restrictions.

5.1. WaveStar

The WaveStar machine (wavestarenergy.com) was idealized as a
wave energy converter (WEC) consisting of a row of half-submerged
buoys, as shown in Fig. 10.

The oscillatory motion of the buoys as a wave passes is harnessed for
energy production with a power take-off system (PTO) that uses the
rotation speed of the arm connected to the buoy. A fundamental design
concern with this type of machine is the efficiency loss due to shadow
effects on the series of buoys. Under normal operating conditions a
trivial linear analysis model can be used to recover the machine re-
sponse, but non-linear models or experimental set-ups are required to
analyze extreme conditions. DualSPHysics can now fully describe the
system and perform the integrated multiphysics computations.

A regular wave-maker was initialized, generating 2nd order waves
of the same amplitude as the height of the buoys (H=0.45m) and a
frequency of 0.65 Hz, resulting in a wavelength of ≈4m. For a non-
damped mechanism, i.e., with a disengaged PTO, the force and torque
responses on the buoys are represented in Fig. 11.

The first buoy is clearly more excited, with the expected influence of
the shadow being apparent in the signal from the following buoys. A
PTO can be added by incorporating a non-linear spring that resists the
rotation of the arm, at the connection to the main body. Forces and
torques for such a case are represented in Fig. 12, corresponding to a
spring with stiffness k=2500 Nm−1, damping coefficient
ν=500 Nsm−1 and non-linear stiffness exponent p=1.25.

Comparing both quantities for both cases, the amplitudes in the
damped case are smaller, as expected, with the signals presenting more

Fig. 12. WaveStar buoy force and torque response with PTO.

Fig. 13. Passive tidal turbine in DualSPHysics.
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variability and apparent shadow effects being more pronounced. The
10 s simulations were carried out in under 155min, with a resolution of
approximately 20 particles per buoy diameter.

5.2. Tidal turbine

Tidal turbines are typically designed as bottom attached machines
that take advantage of tidal currents to activate a PTO. Dynamics are
typically very slow, and the direction of the turbine is decided by an
active controller, designed to optimize energy production. In the fol-
lowing simulations a fully passive design is presented, no control over
the turbine orientation is exerted, instead using a large hydrodynamic

foil to align the turbine with the flow. A snapshot of the solution can be
seen in Fig. 13.

The central pillar allows for the body of the turbine to rotate on the
vertical axis, while the propeller is allowed to rotate along the axis of
the body, with both joints fully undamped. The foil is visible at the end
of the turbine body. The scenario consists of a zero to approximately
one tenth body length per second average fluid velocity, along a 30 s
interval, recreating a sudden tidal surge. The horizontal reaction force
and torque on the pillar joint are shown in Fig. 14.

Both force and torque show the expected decrease as the propeller
begins to rotate and disturb the developing flow, decreasing the drag
forces. The design of the foil can be optimized under varied perfor-
mance objectives and flow conditions with simple geometric changes,
with computational times of approximately 130min for a resolution of
12 particles for the pillar diameter.

5.3. Ragdoll

Considering the amount of interlocking joints, self-collision possi-
bilities and overall geometry, the human articulations are a challenging
mechanical system to reproduce, let alone in the context of a fully
coupled fluid–solid solver. Fig. 15 shows the set-up of a dam-break on
an irregular geometry were a fully jointed dummy ragdoll was placed.
The shoulders, hips and neck are represented by spherical restrictions,
while elbows and knees are hinged rotations. No explicit limits were
placed on the extent of the relative rotations, a possibility with the
current implementation. The model is fully self-colliding, using the full
description of the DVI approach described in Eq. (20).

The case was run on a Nvidia GTX Titan Black, counted 4.4 million
particles and the 10 s simulation took 41 h to run, due to the high re-
solution. A case without the ragdoll took 37 h, and the added cost is
related to the collision detection.

6. Conclusions

A multi-physics augmented version of DualSPHysics was presented,
by implementing part of Project Chrono's library, namely, the DVI
solver. This allows for general fluid and mechanism descriptions to be
coupled, presenting simulation and analysis possibilities previously
unattainable, unless custom implementations were developed. The va-
lidation tests show that the model reproduces both frictional and

Fig. 14. Passive tidal turbine in DualSPHysics. Reaction force and torque at the
pillar joint with non-uniform tide.

Fig. 15. Sequential instants of a Ragdoll simulation in DualSPHysics. t=1, 2, 5, 6.5, 7.5 and 9 s.
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mechanical constraints, appearing to converge at the rate of the em-
ployed SPH method. Further work on resolution refinement for the fluid
discretization should provide the quality of the higher resolution con-
figurations with a fraction of the computational cost.

The application cases were designed to showcase the potential of
the model pertaining to scenarios were a fully coupled, non-linear
model is fundamental to correctly reproduce the system. Use of the new
model is trivial, since the preprocessing pipeline for DualSPHysics is
employed. Due to the efficiency of the DVI formulation, impact on the
computational time is residual, allowing for large and complex systems
to be modeled with ease. These cases represent real applications were
GPU accelerated SPH can have great impact on optimization and design
guidelines for relevant industries. Further work will see the increase in
available joint topologies, as well as the inclusion of structural analysis
by employing Project Chrono's FEM solver, as well as explore adaptive
resolution schemes [31] and particle shifting algorithms [5] to increase
the solution accuracy while decreasing computational cost.
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