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Can weather generation capture 
precipitation patterns across 
different climates, spatial scales 
and under data scarcity?
Korbinian Breinl1, Giuliano Di Baldassarre1, Marc Girons Lopez  2, Michael Hagenlocher  3, 
Giulia Vico  4 & Anna Rutgersson1

Stochastic weather generators can generate very long time series of weather patterns, which are 
indispensable in earth sciences, ecology and climate research. Yet, both their potential and limitations 
remain largely unclear because past research has typically focused on eclectic case studies at small 
spatial scales in temperate climates. In addition, stochastic multi-site algorithms are usually not publicly 
available, making the reproducibility of results difficult. To overcome these limitations, we investigated 
the performance of the reduced-complexity multi-site precipitation generator TripleM across three 
different climatic regions in the United States. By resampling observations, we investigated for the 
first time the performance of a multi-site precipitation generator as a function of the extent of the 
gauge network and the network density. The definition of the role of the network density provides new 
insights into the applicability in data-poor contexts. The performance was assessed using nine different 
statistical metrics with main focus on the inter-annual variability of precipitation and the lengths of 
dry and wet spells. Among our study regions, our results indicate a more accurate performance in wet 
temperate climates compared to drier climates. Performance deficits are more marked at larger spatial 
scales due to the increasing heterogeneity of climatic conditions.

Precipitation is a key component of the water cycle, which in turn affects terrestrial ecosystems, agricultural pro-
duction and human well-being. Access to long precipitation time series is crucial for many ecological, agricultural 
or hydrological studies, as well as for public health and climate research1, 2. Many regions lack such wealth of data, 
so that realistic simulations of precipitation patterns are needed. Simulations have to preserve the spatial and 
temporal dynamics as well as the correlation structures of precipitation patterns and their variability as they are 
fundamental for impact analyses3.

Precipitations patterns can be simulated either with numerical weather prediction models or stochastic algo-
rithms. These methods are complementary and have specific advantages and drawbacks. Numerical weather pre-
diction models include a physical description of the entire atmosphere and its interaction with the land surface, 
often also including oceans and vegetation, making the simulated fields physically consistent. This however leads 
to high computational costs and potential limitations in both the number of simulations that can be generated 
and their spatial resolution. Typically, the feasible spatial resolution is coarser than required for most impact 
assessments. Moreover, the accuracy of precipitation fields produced by such models can suffer from spatiotem-
poral and amplitude errors depending on the model physics, dynamics and model configuration4, 5.

Stochastic algorithms, in contrast, require considerably less computational effort and can therefore easily pro-
vide long time series. Multi-site stochastic precipitation generators are mathematical algorithms for producing 
synthetic precipitation based on multiple ground observation sites (i.e. precipitation gauges). They can simu-
late precipitation patterns in space and time similar to the actual observations. Several algorithms exist, often 
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embedded in weather generators for various climate variables. Stochastic precipitation generators can be used for 
downscaling of numerical weather models and for climate projections6–15, flood and drought assessments16–21, 
agricultural studies22–24, food security25, 26, as well as public27–29 and veterinary health30. The main drawback of 
statistical methods is that, while spatial and temporal correlation structures are kept, unlike numerical weather 
prediction, they cannot simulate the associated large-scale dynamics leading to temperature and precipitation 
variabilities.

Despite this limitation, there is undoubtedly potential for more extensive application of multi-site precipi-
tation generators. Yet surprisingly little knowledge is available regarding their application across spatial scales, 
in different climates and under conditions of data scarcity. So far, stochastic multi-site precipitation generators 
have been primarily applied at small spatial scales (not exceeding some tens of kilometers), with only a handful 
of sites10, 13, 31–37. Only very few authors have focused on larger spatial scales38–41. The majority of these studies has 
been carried out in temperate and precipitation-rich climates in developed countries, where dense observation 
networks and long time series of reliable climate data are the norm8, 9, 19, 20, 22, 24, 39, 42, 43. Furthermore, the wide-
spread application of precipitation generators has been limited by the lack of publicly available transparent source 
codes and the mathematical complexity of many models, so that setting up a model still requires major efforts. 
The complexity of algorithms has been recently identified as an issue by Apel et al.44 and the fragmented body of 
knowledge has been critically reviewed by Ailliot et al.45.

Towards an easier and more widespread use of stochastic multi-site precipitation generation, here we first 
assess the performance of multi-site precipitation generation across three different climatic zones and across 
spatial scales in the United States, from about thirty kilometers to over one thousand kilometers of maximum 
extent. Second, we link the density of the observation network to the performance of the precipitation generation, 
to provide new insights into model performance under conditions of data scarcity and thus into the applicability 
in data-poor regions, such as in emerging economies and developing countries.

Addressing these multiple aspects requires the generation of very large data amounts that go far beyond what 
has yet been presented: for our study we generated almost 1.5 million years of synthetic precipitation. For this 
reason, we use the latest version of the very fast reduced-complexity stochastic multi-site precipitation generator 
TripleM (Multisite Markov Model), which requires only two key parameters for simulating any gauge network 
in its simplest setup. Other algorithms require a very large number of parameters that grow exponentially with 
the number of gauges42, making comprehensive studies not feasible. To our knowledge, TripleM is the most 
straightforward multi-site precipitation generator currently available and thus probably one of very few models 
that allows for comprehensive studies.

Data and Experiments
Station-based climate observations. In order to fulfill the objectives of the study, a homogeneous data-
set covering different climatic zones and providing a sufficiently dense observation network is needed. For these 
reasons, we use the dataset of daily precipitation observations available for the United States from the Global 
Historical Climatology Network - Daily (GHCN-Daily)46 for the 30-year period 1986–2015, which has been 
compiled by the National Climatic Data Center (NCDC) (https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). 
From this dataset we selected three study areas representing different climatic conditions, located in the North-
East (NE), South-East (SE) and West (W) of the United States (Fig. 1).

The NE is dominated by a relatively cold climate without any dry season, with evenly distributed monthly 
precipitation and warmer summers. The SE is dominated by a temperate and tropical monsoon climate without 
any pronounced dry season and moist, hot summers. The W is dominated by an arid and semi-arid climate with 
frequent droughts47. It has a marked seasonality in precipitation and includes a temperature gradient with warmer 
(South) and colder regions (North). While the inter-annual variability of precipitation is more evenly distributed 
over the year in the NE and SE, it has a pronounced annual cycle in the W, reaching comparatively high values in 
the winter months. The lengths of dry and wet spells show similar annual cycles in the NE and SE with dry spells 
peaking in winter/spring and in the fall. Dry spells are longest in the summer in the W. For the period 1986–2015, 
72 precipitation gauges with complete time series are available for the NE, 111 for the SE and 98 for the W.

Design of the experiments. To evaluate model performance under differing conditions of data availability/
scarcity, we investigated four different levels of gauge network densities (Table 1).

The density scenarios are based on actual precipitation gauge network densities of the GHCN-Daily dataset 
(1986–2015) in two of the three study areas in the United States (“very high”), the average density over Europe 
(“high”) as well as China (“medium”) as an orientation for emerging economies, and the average density on the 
African continent (“low”) as an orientation for developing countries (see Figure S1 in the Supplementary mate-
rial). The distribution of precipitation gauges in each scenario was conducted subjectively, aiming for equally 
spatially distributed networks. As each density scenario required a comparable network density for each study 
area, a high-density scenario could not be examined for the W.

For each density scenario, we conducted four separate experiments, each starting at one of the four so-called 
‘starting sites’ (located in four different regions of each study area; see red gauges in Fig. 1). The four starting sites 
(i.e. four experiments starting in different regions of the study area) were introduced to capture the obviously not 
fully homogenous climate of each study area. Each experiment began by considering a minimum precipitation 
gauge network of three sites (i.e. the starting site and its two closest sites), continuously widening up the pre-
cipitation gauge network by adding the next closest precipitation gauge up to the maximum number of gauges 
available for each density scenario. For each precipitation gauge network, we simulated 30 different ensembles to 
obtain stable results, each time over the 30-year period (i.e. 900 years). In other words, for each density scenario 
and starting site in each study area, we performed 30 runs for a network of three gauges, 30 runs for four gauges 
and so on, up to 30 runs for all available gauges. For example, the total number of simulated years in the NE for 
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the density scenario “very high” is 4 (experiments using the four starting sites) × 70 (different precipitation gauge 
networks between three and 72 sites) × 30 (different ensembles) × 30 (observation years) = 252,000 years. The 
combination of all three study areas (i.e. climates), precipitation gauge network sizes (i.e. spatial scale) and num-
ber of sites (i.e. network density) led to a total of 1,461,600 generated precipitation years.

We used the semi-parametric multi-site precipitation generator TripleM21, 48, which we optimized for large 
gauge networks to perform the experiments (see Methods). We simulated daily precipitation amounts by a pure 
resampling of the observations (bootstrap) to eliminate uncertainties arising from parametric precipitation sam-
pling. A detailed description of the TripleM algorithm is available in the Methods.

Results and Discussion
We focus on four key metrics relevant for climate change and climate change impacts studies, namely: (i) the 
inter-annual standard deviation of precipitation, (ii) the average maximum length of dry spells (dry periods), (iii) 
the mean length of dry spells, and (iv) the average maximum length of wet spells (wet periods). The intra-annual 
distribution of precipitation and inter-annual variability in precipitation amounts are key drivers of the function-
ing of terrestrial ecosystems, and hence local carbon balance, agricultural production, natural hazards such as 
floods and droughts, and have both direct and indirect impacts on human health and well-being49–51. Inter-annual 
variations in precipitation and temperature explain on average a third of the global crop yield variability50. Mean 
dry spells represent continuing water stress of plants52, while maximum dry spells (ii) are of relevancy for drought 

Figure 1. The three study areas in the North-East (NE), South-East (SE) and West (W) of the United States, 
including the location of all precipitation gauges available for the period 1986–2015 (grey dots), the starting 
sites of the experiments (see section ‘Design of the experiments’ below), plots of the mean precipitation, annual 
standard deviation of precipitation, mean length of dry and wet spells, averaged over all gauges for each month. 
The bar/line plots also contain information on the mean annual precipitation (MAP). The map was generated in 
ArcGIS 10.2 (http://www.esri.com/), related bar/line plots in MATLAB 2016a (http://www.mathworks.com/).

Study area/number 
of gauges

very high 
(5,200 km²/gauge)

high (11,400 km²/
gauge)

medium 
(48,000 km²/gauge)

low (94,400 km²/
gauge)

Maximum gauge 
network extent (km)

NE 72 32 8 4 1,173

SE 111 52 12 6 1,161

W not available 98 23 12 1,167

Table 1. Number of gauges for the three study areas, the four simulated precipitation gauge density scenarios 
referred to as ‘very high’, ‘high’, ‘medium’ and ‘low’, and the maximum extent of the networks in each scenario.
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studies. Maximum wet spells (iv) influence floods and, depending on climatic conditions, have a direct impact 
on the prevalence of water-related vector-borne diseases, such as Chikungunya53 or rift valley fever54, 55, but also 
on agriculture56. We assessed the performance of the precipitation generator with focus on the average annual 
performance and on the summer (Jun, Jul, Aug) and winter (Dec, Jan, Feb) seasons separately. The precipitation 
generator performance was characterized as the relative error between the mean of the 30 simulations for all sites 
of each precipitation gauge network and the observations. Since we conducted four experiments with four start-
ing sites in each study area, in the figures below we show the mean of these four simulations.

For a more in-depth assessment, we examined five additional standard hydrological metrics: (i) the simulated 
mean precipitation, (ii) the daily standard deviation of precipitation, (iii) the mean length of wet spells, (iv) the 
lag1 autocorrelation of precipitation occurrence as well as (v) the cross-correlation of precipitation occurrence 
lagged by one day as a proxy for the persistence of weather situations. The results for these metrics are reported 
in the Supplementary material.

Climate and spatial scale. We present the impact of the spatial scale (Figs 2 and 3) for the high density 
scenario (see Table 1) for the three climates. The performance generally decreases with increasing gauge network 
size. This is expected as in TripleM daily snapshots of precipitation occurrences are first clustered according 
to their similarity and then simulated based on a univariate Markov process. A larger extent means larger, less 
homogenous precipitation snapshots and lower performance. For the four metrics, increasing the network size 

Figure 2. Relative error for all sites in the North-East (blue), the South-East (green) and the West (magenta) for 
all months. The error is plotted for four metrics against the maximum extent of each simulated gauge network. 
For each study area, the lines show the mean of the four simulations (using four different starting sites; see 
Fig. 1).
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increases the mean error on average by 3.7% in the NE (from 0.0% with three sites), 6.2% in the SE (from −1.0% 
with three sites) and 4.3% in the W (from −5.7% with three sites).

For the annual performance (Fig. 2), the inter-annual standard deviation tends to be underestimated. This is a 
typical phenomenon of daily weather generators, referred to as overdispersion. The underestimation is generally 
low for the NE and the SE and higher for the W. On average, the underestimation reaches a maximum of −6.4% in 
the NE (starting at −3.0% for the smallest network size) and −6.2% (starting at −4.3%) in the SE, with a slightly 
decreasing performance towards larger gauge networks. The underestimation in the W increases from −16.7% 
for three gauges to −19.6% for all sites. Daily weather generators rely on daily weather scenarios and have thus a 
limited capability for reproducing the inter-annual variability. The underestimation is predominately caused by 
the resampling approach. The bootstrap only takes into account observations and cannot generate very extreme 
events, which underestimates the sampling distribution, especially for small sample sizes. The latter explains 
the higher overdispersion in the W where precipitation events are rare. Attempts have been made to overcome 
this shortcoming57–59. For example, overdispersion could be further reduced also in TripleM-type models by 
introducing parametric precipitation sampling with heavy tailed distributions as suggested by Wilks39. However, 
fitting of parametric precipitation curves in dry areas may be infeasible due to the limited number of precipitation 
observations. Seasonal differences are shown in Fig. 3. In the NE and SE, the variability is more underestimated 
in the summer. The observed annual standard deviation averaged over the entire precipitation gauge network is 
43.8% higher in summer than in winter in the NE and 30.1% higher in the SE. In the W, it is 8.7 times higher in 

Figure 3. Relative error for all sites in the North-East (blue), the South-East (green) and the West (magenta) 
for the summer (solid lines) and winter season (dashed lines). The error is plotted for four metrics against the 
maximum extent of each simulated gauge network. For each study area, the lines show the mean of the four 
simulations (using four different starting sites; see Fig. 1).
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winter than in summer due to the predominantly arid summer. It is an inherent property of the bootstrap that 
the underestimation decreases exponentially with an increasing variability of the observations. This explains 
why seasons with a relatively high inter-annual variability are more strongly underestimated than seasons with a 
relatively low variability.

The length of maximum dry spells is slightly overestimated in the NE with 2.1% for three gauges and under-
estimated for larger extents, reaching −1.6% at full extent (Fig. 2). The trend is similar for the SE and W, starting 
with an overestimation of 1.3% and underestimation of −3.5% respectively and reaching −4.3% and −5.2% at 
full extent. Mean dry spells are likewise least underestimated in the NE (−0.3% to −4.3%). The underestimation 
in the SE and W starts with −1.4% and −3.2%, reaching −9.8% and −7.9% at full extent. The bias for simulating 
maximum wet spells is smallest in the NE (1.2% to −2.5%). Maximum wet spells are less well reproduced in the 
SE and W and follow similar trends (0.5% and 0.6% to −8.3% and −7.4%).

In the NE and the SE maximum dry spells are better reproduced in winter compared to summer (Fig. 3). 
This is related to the persistence of weather events, expressed by the lagged cross-correlation of the precipitation 
occurrences, which is 6.4% higher in winter in the NE and 13.8% higher in the SE compared to summer. The clus-
tering approach performs better when precipitation events are predominantly of frontal nature. The convective 
systems that are common in summer are more variable, with smaller scales in time and space, thus leading to 
more distinctive precipitation patterns and reducing the clustering performance. The performance for mean dry 
spells is similar with almost equal performance in summer and winter in the NE.

Performance differences between the NE and the SE are related to the strong impact of convective systems in 
the SE, particularly in summer: Florida is the state in the United States with the highest thunderstorm activity60, 61.  
Precipitation contribution of tropical cyclones to the seasonal precipitation totals can reach up to 20% in the 
coastal regions, with comparatively high inter-annual variabilities depending on whether a year has hurricane 
observations or not62. According to the International Best Track Archive for Climate Stewardship IBTrACS63 
(release version v03r09), the South-East study area as presented in this research has been hit by 23 named and 
three unnamed tropical cyclones between 1986 and 2015 in the summer season. Conversely, precipitation in the 
NE is predominately of frontal nature. According to a study by Hawcroft et al.64 using two different reanalysis 
datasets the contribution of extratropical cyclones to the total precipitation in the NE study area reaches over 
80% in the winter season and over 65% in the summer season with uncertainties of up to about 20% depending 
on the reanalysis dataset under investigation. In the W, the precipitation climatology is much more complex, 
with a pronounced spatial heterogeneity of precipitation with a large impact of smaller-scale climatic controls in 
the mountainous areas65. The region is also strongly influenced by the El Niño–Southern Oscillation (ENSO). In 
the Great Basin, which covers most of the Western study area except for California, above normal precipitation 
between October and March is predominately associated to ENSO years66. The inter-annual variability is also 
linked to ENSO67. The mountain ranges of the Sierra Nevada in California receive high precipitation amounts due 
to orographic effects, which also explain the dry conditions in the Great Basin because of a rain shadow effect. The 
lagged cross-correlation of observed precipitation occurrences (i.e. weather persistence) is three times higher in 
winter than summer, due to the dominant influence of midlatitudinal synoptic-scale storms68, 69. The still better 
performance for dry spells in the W in summer is related to the arid summer (recorded precipitation on only 
4.3% of all days), making a pronounced underestimation of dry spells unlikely. The performance for maximum 
wet spells in the NE and in the SE is similar to the performance in regard to dry spells. The performance is better 
during winter with higher persistence of weather events. Maximum wet spells are equally reproduced in both 
seasons in the W. The 90% confidence intervals (see Supplementary material) show similar spreads across seasons 
and study areas. The most significant differences are related to the W: For summer, confidence intervals are signif-
icantly wider for the majority of metrics, which is related to the low number of precipitation days. The results for 
the medium and low gauge density scenarios (Table 1, not shown here) showed comparable results.

Network density and spatial scale. The gauge network density impacts the performance. Here, for all 
available density scenarios (Table 1), we focus on the annual performance only (Fig. 4), but seasonal perfor-
mances are comparable.

Deviations between network densities can be encountered. For the majority of the metrics, the model bias 
decreases with a reduced network density, with differences between about one to five percent, depending on 
the study area and maximum extent. However, low density does not always mean better performance, primar-
ily for the inter-annual standard deviation of precipitation in the SE and W. To reach the same fixed duplication 
rate of observations, fewer clusters of daily precipitation snapshots are required for small networks. Thus, the 
clusters represent weather situations less well, which effectively reduces the model performance. The opposite 
applies to dry and wet spells where the bias decreases with a reduced network density. The most pronounced 
differences can be recognized for maximum and mean dry spells in the SE, and maximum wet spells in the SE 
and in the W. The phenomenon is likewise caused by the clustering algorithm. A smaller number of gauges 
leads to a better distinction between the clustered daily precipitation snapshots and therefore higher similarity 
within these clusters, which improves the performance. Deviations are higher in the less homogenous climates 
of the SE and W. The slightly better performance may give the impression that a lower dense gauge network 
may likewise be preferable, but (i) differences in the performance do not exceed differences of one to five per-
cent and (ii) most applications require the interpolation of the simulated precipitation patterns, where a high 
number of stations is desirable.

Conclusion
This study is a first step towards overcoming the fragmented, eclectic knowledge in stochastic generation of pre-
cipitation patterns and is thereby a call for testing multiple, and possibly publicly available, model codes across 
different climate types, spatial scales and network densities. The comparison of 30-year long observed daily 
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precipitation patterns with generated precipitation across three different climates shows a general adequate agree-
ment when considering relatively small regions, although key metrics such as dry or wet spells are often underes-
timated. Larger spatial scales lead to reduced performance in reproducing the observations. The simulations are 

Figure 4. Relative error for all sites in the North-East (NE), the South-East (SE) and the West (W) for all 
months. The error is plotted for four metrics against the maximum extent of each simulated gauge network and 
density scenario. For each study area and scenario, the lines show the mean of the four simulations (using four 
different starting sites; see Fig. 1). The solid line represents the results for the very-high gauge network density 
(not available for the West), the dashed line for the high-density, the dash-dot line for the medium density and 
the dotted line for the low gauge density scenario.
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less biased in wet temperate climates than in dry climates. Seasons and locations that are dominated by frontal 
precipitation are better reproduced than seasons with a more pronounced impact of convective systems. This 
explains the different performance obtained in the temperate North-East and subtropical South-East. Seasons 
with a higher inter-annual variability of precipitation are less well reproduced, as demonstrated with the Western 
study area, which is influenced by ENSO.

In this research, we focused on the current climate. There are different approaches to parameterize precipita-
tion generators to simulate climate change, for example by altering the precipitation values using output from cli-
mate models as for example suggested by Turkington et al.13. However, as the pure alteration of the precipitation 
amounts ignores potential future changes in dry and wet spells, another promising avenue could be to condition 
the clustering of the daily precipitation snapshots in the TripleM model to the distribution of current and future 
circulation patterns to incorporate changes of dry spells, wet spells and also in the autocorrelation of precipita-
tion. Simulating climate change with weather generators however has inherent limitations in regard to decadal 
variabilities and long-term trends. The consideration of other climate types beyond the three of this study would 
be another interesting topic for investigation.

The development of common evaluation standards as for instance information on relative errors for better 
comparability is highly desirable. Additional comparative studies particularly in countries with lower network 
densities (Figure S1, Supplementary material) would be useful to validate the findings of this study. Further, the 
proposed methodology should be complemented to enable simulating projected precipitation patterns that can 
be used for climate change impact studies, ideally in the developing world, where impacts of climate change are 
often most significant. At this point in time, facing numerous published types of algorithms, eclectic case studies, 
a very limited number of transparent publicly available source codes and a lack of common evaluation standards, 
the full potential of stochastic multi-site weather generation remains unclear. The issue magnifies when different 
model types are parameterized for simulating future climate scenarios. We made a first step towards closing this 
gap by demonstrating that – if there is awareness and knowledge of stochastic approaches and model type specific 
opportunities and shortcomings – stochastic multi-site precipitation generation has the potential to support a 
variety of societally and ecologically relevant issues in different climates, at different spatial scales and under 
differing conditions of data availability.

Methods
The reduced complexity multi-site precipitation generator TripleM (Multisite Markov Model) applied here works 
as follows: First, daily snapshots of the precipitation occurrences (i.e. catchment-wide precipitation patterns) are 
clustered according to their similarity. The model uses the non-hierarchical k-means clustering method70, 71 and 
the hamming distance (equation (1)).

∑= ≠
=

distance x y
p

I x y( , ) 1 { },
(1)j

p

j j
1

where I is the indicator function.
In the original version of TripleM48, the k-means clustering was applied to daily snapshots of precipitation 

amounts that were first standardized using the z-score transformation in order to take into account the het-
eroscedastic nature of the precipitation. This led to a satisfying performance in a comparatively small Alpine 
precipitation gauge network not exceeding a maximum distance between sites of about 150 km. For this research, 
we ran multiple experiments with different clustering methods and it turned out that the performance increases 
significantly for large gauge networks when applying the hamming distance to binary precipitation occurrences.

Second, the clustered occurrence vectors are simulated with a Markov process (equation (2)), where the tran-
sition probabilities depend on m previous days, i.e.,

… = … < −+ − − + − −X X X X X X X X X m tPR{ , , , , } PR{ , , , } with 1 (2)t t t t t t t t m1 1 2 1 1 1

Once the synthetic time series of clusters are simulated, each cluster is replaced by a random amount vector 
(i.e. daily snapshot of precipitation amounts) belonging to the same cluster. In a last step, which is optional, the 
model introduces sampling of parametric precipitation amounts in combination with an adapted version of a 
resampling approach by Clark et al.41, to account for unobserved precipitation extremes. The method is shown 
in Fig. 5, using a hypothetical example of three sites and a ten states Markov chain: After generating synthetic 
time series of clusters using the Markov process (a), amount vectors are randomly drawn from all observations 
that fit the corresponding cluster (b). Following this, synthetic precipitation amounts are sampled independently 
for each site from parametric curves (c) optionally using correlated uniform random numbers from a Cholesky 
decomposition72. The use of correlated random numbers avoids the generation of significantly different precipi-
tation amounts across sites, which becomes increasingly important when generating short synthetic time series. 
In the last step (d), the parametric precipitation amounts are reshuffled according to the original ranks after the 
resampling in step (b), to maintain the inter-site correlations.

The entire simulation process can be depicted from Fig. 6.
In its most simplistic setup (resampling i.e. bootstrap without parametric sampling of precipitation amounts as 

applied in this study), TripleM has two key parameters the user has to define: the duplication rate and the order of 
the Markov chain. As for the duplication rate, an inherent characteristic of TripleM is that the clustering approach 
will duplicate parts of the time series: A higher number of clusters will generally improve the reproduction of 
various metrics of the observations such as the precipitation autocorrelation, but result in duplicated observa-
tions in the simulations, especially in large station networks. Here and elsewhere48, a maximum duplication rate 
of only 1% produced satisfying results. Higher duplications rates increase the computational costs. The second 
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key parameter is the order of the Markov chain used. In this study, a one-order Markov chain was used. For larger 
observation networks, it is recommended not to increase the order due to the exponentially growing state-space 
related to higher orders.

Another model specific characteristic is the reproduction of inter-site correlations. If long synthetic time series 
are generated in combination with parametric precipitation sampling, inter-site correlations are better repro-
duced. This is caused by the reshuffling method. With long synthetic time series, the pool of parametric precip-
itation amounts becomes more similar to the resampled precipitation amounts. In TripleM, the reshuffling is 
conducted over all generated years separately for all months or seasons depending on the chosen model setup. 
The choice of parametric models for the synthetic precipitation amounts is another influencing factor in general, 

Figure 5. Key steps of precipitation generation in TripleM after clustering of the daily precipitation snapshots 
and Markov simulation (a), including resampling of amount vectors (b), parametric sampling (c) and 
reshuffling (d).

Figure 6. Schematic flow diagram of the TripleM precipitation generator. TripleM can be used as a bootstrap 
model (Output 1) and a parametric precipitation model (Output 2). Parallelograms represent time series or 
variables, boxes represent methods. Blue parallelograms represent input and output data. Cholesky matrices and 
transition matrices are either derived monthly (12) or seasonally (4). The parametric distribution parameters 
are either derived monthly (12) or seasonally (4) for the number of gauges simulated (n).
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which has been discussed in the past36, 73, 74 and is not specific to TripleM. The MATLAB code offers the Gamma 
distribution, the Weibull distribution or a compound distribution of the Weibull distribution for lower and a 
Generalized Pareto distribution for higher and extreme precipitation amounts with a user-defined threshold 
between both curves.

TripleM offers monthly and seasonal setups. All steps, including the clustering of amount vectors, the fitting of 
the Markov chains, the simulation of the Markov process and the reshuffling of parametric precipitation amounts, 
can either be run monthly or seasonally. In this study we used a monthly setup.

Code and data availability. The MATLAB source code of TripleM, a user manual and a training dataset 
are available from the github page, https://github.com/KBreinl/TripleM. The data used in this paper are available 
from the NOAA websites.
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