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Abstract

Hydrogeomorphological diversity is supposed to be an important driver of the
biodiversity and functioning of running waters. Experimental evidence, however, has been
restricted to selected spatial and temporal scales. Here, we present a framework for
quantifying hydrogeomorphological diversity based on additive variance partitioning similar
to established biological concepts based on «, #and ydiversities. By testing this framework
with empirical data from streams, we demonstrate that the spatial flow variability (flow g
diversity) is the prime driver of the g diversity of biofilm-dwelling autotrophs and
phagotrophic protists as well as nitrogen uptake efficiency, thereby underlining the relevance
of hydrogeomorphological niches. Our framework facilitates the joint analysis of the
interaction among hydrogeomorphology, biodiversity and ecosystem functioning.
Furthermore, our framework can guide hydroecological research by integrating it into a
broadened diversity concept and help optimizing hydrogeomorphological restoration

measures to recover the structure and functioning of running waters.

Introduction

Environmental heterogeneity induced by physical and biotic factors is a major attribute
of ecosystems and can be defined as the variability in processes or patterns over space and
time'2. The habitat heterogeneity hypothesis postulates that species diversity increases with
environmental heterogeneity because more complex habitats provide more niches and a more

diverse supply of resources®. Increased habitat heterogeneity should thus increase the ability
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of ecosystems to maintain their functionality despite temporal variations in environmental

conditions®.

In streams and rivers, habitat heterogeneity is commonly related to the spatial and
temporal variability of hydrogeomorphology considered in terms of stream flow velocity and
streambed geomorphology®®. Streambed roughness has been shown to affect the hydraulic
habitat and mixing processes at the benthic interface”®. Spatially, habitats are structured
hierarchically and extend from microhabitats (for biofilm communities as considered here ~
102-10"tm, hereafter referred to as spots), mesohabitats (10° m) to reaches (~ 10'-10? m),
segments (~ 10? m) and catchments (~ 10® m), with mutual interactions among habitats®*°.
Temporal variations of flow velocities range from milliseconds to minutes (i.e., the hydraulic
scale of velocity fluctuations) up to days, months and years (i.e., the hydrologic scale of flow

fluctuations®).

Most empirical studies in running waters have used bulk measures of
hydrogeomorphological parameters (e.g., mean flow velocity, water depth, wetted area, and
bed slope) to characterize spatial habitat heterogeneity'*~'°, and only a few linked habitat
heterogeneity to biological communities at identical scales!®-!8, Moreover, empirical
assessments of biogeochemical cycling and water quality in streams are typically conducted at
the reach or larger spatial scales®>°. Yet, reach-scale properties emerge from strongly varying
smaller-scale hydrogeomorphological conditions, which need to be considered for
extrapolation to larger spatial scales®®. Furthermore, temporal variations of flow velocity
have rarely been considered for characterizing heterogeneity at the micro scale'’?!, even
though high-frequency turbulent velocity fluctuations affect the structure and functioning of

surface-associated microbial communities (biofilms) in streams®22,

Yet, the broad range of hydrogeomorphological diversity that potentially affects the
biodiversity and functioning of running waters has not been addressed so far. This is urgently

3
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needed to improve our understanding of how hydrogeomorphological dynamics across
different spatial and temporal scales shape the biodiversity and functioning of these
ecosystems?324, Moreover, planning and successful implementation of restoration efforts
require a scalable framework to characterize the habitat heterogeneity needed to restore

biodiversity and ecosystem functions to natural levels.

Here, we describe a novel framework for characterizing habitat heterogeneity in running
waters by a diversity index that combines measures of spatial and temporal variability of
hydrogeomorphology across different scales by variance partitioning. Variance partitioning
has been used in geographical analyses for almost half a century®; it has been widely applied
in various fields, including landscape ecology?® and river science?”?, but has rarely been
connected to habitat heterogeneity, biodiversity and ecological functioning. We adopt this
framework to quantify relationships between hydrogeomorphological diversity and biofilm
diversity, including bacteria, autotrophs and phagotrophic protists, representing the key guilds
of biofilm food webs in running waters?®. Moreover, we link hydrogeomorphological
diversity to stream functioning quantified as areal nitrogen uptake. In doing so, we aim to
identify the relevant scales at which flow and geomorphological diversity of the streambed
are interacting and at what scales flow diversity affects biodiversity and the diversity of

biogeochemical hot spots.

Results and Discussion

Conceptual framework of hydrogeomorphological diversity

The scale-dependence of biotic diversity is commonly characterized by alpha («), beta () and
gamma (y) diversities*>®!. The « diversity describes the number of species (i.e., species

richness) or species diversity at a particular spot, i.e. at micro scale. The g diversity represents

4
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the change in species richness or diversity between spots, while the y diversity refers to the
overall species richness or diversity of all spots within a region (Fig. 1a). Partitioning the
overall diversity into « and  components should fulfill several basic properties. Among these
are the requirements that « and g diversity should vary independently and that y diversity
should be completely determined by a and S diversities®?. The latter can be achieved through
either an additive or a multiplicative approach between both diversities®®. The additive
approach offers the advantage of direct comparability between diversities, as they are

expressed in the same unit.

Similar to biodiversity partitioning, we applied an additive approach to characterize
the hydrogeomorphological diversity of running waters (Fig. 1b-d). Generally, o diversity
represents the normalized variance of a hydrogeomorphological measure (e.g., flow velocity
or water depth) at a particular spot. Similarly, we express y diversity as the normalized
variance of a hydrogeomorphological measure at different spots within a larger spatial scale.
Finally, g diversity, representing the spatial variance of the mean values, is obtained from the
additive definition of diversities as = y - (a), with (a) representing the mean value of all
a diversities observed at the corresponding scale. The normalization of the variances avoids
inherent dependencies between variance and mean values, which are known to exist for many

physical quantities, including flow velocity*.

The flow diversities should integrate temporal fluctuations (characterizing local
turbulence) and spatial flow variability because both are important characteristics defining
habitat suitability and ecological patterns in running waters across various scales>-¢,
Therefore, flow « diversity at individual spots is calculated as the variance of temporal
velocity fluctuations normalized by the mean flow velocity squared. This quantity
corresponds to the square of the turbulence intensity®’ (i.e., the twofold ratio of turbulent

kinetic energy and squared mean flow velocity). It should be noted that in homogeneous

5
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boundary-layer flows, the turbulent kinetic energy is linearly related to the square of the mean
flow velocity. Hence, spatial variations in flow « diversity do not reflect different magnitudes
in turbulent kinetic energy, but rather different qualities of turbulence, e.g. different eddy
sizes, that result in different relationships between turbulent kinetic energy and mean flow
velocity. Flow g diversity describes the spatial variability of mean (time-averaged) flow
velocities and is normalized by the square of the overall mean velocity at larger scales (meso
scale or reach scale). This quantity has been used in several models (e.g., Mesohabitat
Evaluation Model®®, Mesohabitat Simulation Model*®) or as an index to describe habitat
preferences of biotic communitiest*. Finally, flow ydiversity represents the total velocity
variance, including the spatial variance of mean flow velocity (/) and the mean turbulent

intensities (Fig. 1, see also the Methods section for details on the calculation of flow

diversities).
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Figure 1. Framework for quantifying hydrogeomorphological diversity in streams across
spatial and temporal scales. The framework is based on additive variance partitioning
similar to established biological concepts. It describes hydrogeomorphological diversity at
individual spots (« diversity), between spots (£ diversity, green arrow) and the overall
diversity within a larger region (y diversity (a)). The o diversity describes the variance of
flow velocity or water depth measured at individual spots, and y diversity is the total
variance observed at larger scales. Larger scales include riffles and pools at the meso scale
or the reach scale (schematic longitudinal transect (b) and plan view (c)). g diversity
measures the difference in diversities between spots and, using an additive approach,
represents the variability of mean values at a smaller scale within a larger scale (d). fand »
diversities are shown for the meso scale only. However, the diversities can also be
calculated for the reach scale, with g diversity expressing the variation between meso

habitats and y diversity expressing the overall diversity of the reach.

Geomorphological diversity describes spatial variations in streambed elevation,
commonly decomposed into different types of roughness (e.g., grain roughness) and bed slope
or larger-scale topography*®. Geomorphological « diversity is calculated as the variance of
water depths normalized by the squared mean water depth at the spot (Fig. 1), equivalent to
the square of the relative streambed roughness and the reciprocal of the squared relative
submergence %41, At the meso or reach scale, geomorphological y diversity describes the
variance of local water depths normalized by the square of the mean water depth at larger
scales, and we refer to it as overall geomorphological diversity. Finally, the geomorphological
S diversity is the variability of the mean water depths at the spot scale normalized by the

squared mean water depth (Table 1 in Methods).

Variance partitioning of physical quantities is not new in fluvial hydraulics, and flow
velocities measured at one particular spot are often decomposed into mean values, which vary

with discharge and location, and high-frequency turbulent velocity fluctuations (Reynolds
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decomposition®). The double-averaging approach additionally takes spatial variations of flow

properties into account*>-44,

In this study, we applied the framework to measurements of flow velocity and water
depth, at spatiotemporal scales relevant to biofilm diversity and functioning in gravel-bed
streams. Given the universality of the underlying variance partitioning, the framework can be
applied to ecosystems and communities beyond biofilms in running waters. For example, it
can be used to quantify effects of hydrogeomorphology on the diversity of larger-sized and
motile organisms, such as macroinvertebrates or fish, given that flow diversity has been
recognized as an important physical control on their community composition'%4_ In larger
lowland rivers, the hydrogeomorphological «and g diversities can be used to study their
effects on planktonic algae*’. However, for studies on ecological and biogeochemical
processes in the hyporheic zone, and for assessments of whole-stream functioning and
diversities, additional hydrogeomorphological variables that relate to hyporheic exchange
rates can become more relevant and the characterization of the morphological diversity needs

to be extended accordingly.

We applied the concept to running waters, where normalization of variances by mean
guantities was important to avoid inherent dependencies between turbulence and mean flow,
i.e. between alpha and beta diversities. Besides smaller modifications concerning the
normalization, the concept can also be applied to lentic ecosystems, such as lakes, wetlands
and impoundments. For example, flow diversity could be analyzed within different lake
habitats (e.g., littoral versus benthic, and pelagic zones), as well as across lakes to explain
patterns and differences in algal bloom formation, for which flow and turbulence are
important drivers*4°. Generally, the variance partitioning approach can be readily applied to
other abiotic variables, such as light, temperature, resource and pollutant concentrations, for

linking these to biological variables at commensurate scales. The diversity measures can
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therefore be applied for quantitative assessments of ecological consequences of changing
stream temperature®®>!, as well as to assess the spatial and temporal variations in chemical

exposure to toxicants®2.

Application of the diversity framework

Our proposed framework was applied to an existing data set of high-frequency
measurements of near-bed flow velocities conducted at the spot scale (102 m) at two seasons
in two gravel bed streams with different nutrient backgrounds®22°3, The selected study
reaches (588 m and 510 m long) exhibited natural flow regimes with base flow discharge of
0.18 m3 st and 0.24 m3 s, mean water level slopes of 0.82% and 0.39%, and mean stream
widths of 7.2 m and 7.3 m, respectively. Flow measurements were accompanied by
measurements of the streambed topography in 1x1 m patches along the reaches and were used
to quantify geomorphological diversity (see method section for details on topographic
measurements). The existing data also included microbial species richness in biofilms, which
was estimated in samples collected shortly after the flow velocity measurements at identical
spatial scales (i.e., spot scale, 10 m) and analyzed using both microscopic and molecular
approaches®®. We quantified ecosystem functioning as areal nitrogen uptake of biofilms,
which was available from previously analyzed experiments at the study reaches, which
included whole-stream additions of *°N-labelled ammonium chloride for 24 h periods and
subsequent biofilm sampling®®®*. A nested sampling design expanded the spot (i.e., micro
scale) to the meso and the reach scale (Fig. S2 in Supplement). The « and y diversity of each
microbial guild was expressed as species richness. The « and y diversity of areal nitrogen
uptake rates and uptake efficiencies were expressed as the coefficient of variation. Following

our conceptual framework of hydrogeomorphological diversity, £ diversities were calculated

by subtracting mean « diversity from ydiversity. We used linear models to relate the



193  diversities of streambed geomorphology, microbial guilds and areal nitrogen uptake to flow
194  diversity and found a significant positive relationship in 12 out of 18 models (Fig. 2). The g
195 and yflow diversity increased with g and y biodiversity and g and y diversity of nitrogen
196  uptake efficiencies. In contrast, flow diversity was unrelated to the mean « diversity of

197  microbial guilds, and areal nitrogen uptake rates and efficiencies, but significantly related to

198 season and stream.

Streambed morpholo k% *k%
PROOSY 1 (fow*, stream™) (flow***) (flow**) R21
Bacteria * *
(season®) (stream*) 0.8
>
= *
» Autotrophs 0.6
o (flow*, season*)
>
o Phagotrophic protists Ex * *% 0.4
(season***) (flow™*) (flow™)
0.2
Nitrogen uptake rates k%
(season***, stream™**) 0
Nitrogen uptake efficiencies e ® *
(season*, stream™) (flow*) (flow*)
mean O B Y

Figure 2. Heatplot visualizing the proportion of variance of different diversities explained
by the flow mean ¢, and y diversity (columns), season and stream. The response variables
are the geomorphological mean «, fand y diversity of the streambed, the mean «, fand y
diversity of microbial guilds (TR-Fs of prokaryotic 16S rRNA genes abbreviated as
bacteria, autotrophic morphotypes abbreviated as autotrophs and phagotrophic protist
morphotypes abbreviated as phagotrophic protists), and the mean «, S and y diversity of
areal nitrogen uptake rates and efficiencies. Bold stars show the level of significance of the
individual models, and the text followed by small stars shows the significance of the

explanatory variables (p <0.05 *, p < 0.01 **, p < 0.001 ***).

199  Flow and geomorphological diversities

200 The mean overall diversities (y diversities) of flow and streambed geomorphology

201  increased with increasing spatial scale, mainly due to increased mean spatial variability (£
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diversities). In contrast, the mean temporal flow variability (flow « diversity, corresponding
to turbulence intensity) and streambed roughness (geomorphological « diversity) increased
only slightly or were nearly constant across both scales (Fig. 3a). The mean flow velocity
varied stronger between larger-scale features of the stream bed (i.e., pool-riffle structures at
the meso scale) than due to small-scale streambed roughness. This result agrees with previous
findings that water depth affects turbulent flow structures more than protruding streambed
elements®. The strong increase in geomorphological S and y diversities from the meso to the
reach scale in our study was associated with changes in the bulk geometry of the streambed,
in addition to the predominant effect of form roughness at smaller scales. Here, the highest
relative contributions of g diversity to y diversity were obvious for geomorphological

diversity and accounted for 77% and 95% at the meso and reach scale, respectively (Fig 3a).

We found a strong relationship between flow and geomorphological g diversities
(F1,60 = 21.64, p < 0.001, Fig. 2), which was expected given that the mean flow velocity
depends strongly on the relative submergence of the streambed. Previous studies have found a
wide range of power law-relationships between relative submergence and mean flow or vice
versa between relative roughness and flow resistance®. Skin friction dominates the resistance
force at high relative submergence and depends only weakly on the relative roughness
(approximately with the power of 1/6). At lower relative submergence, as in the present study,
larger contributions from form drag forces resulted in a nearly linear relationship between
flow resistance and relative roughness. Similar results were found in sandy lowland streams’,
highlighting the universality of this relationship for other stream types. The relationship
between the relative submergence at the grain scale (geomorphological mean « diversity) and
temporal flow variability (flow mean « diversity) differed among streams (Fig. 2), which may

result from differences in bed slope> and roughness between stream reaches (Fig. S1 in the
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Supplement). Seasonal differences were not relevant for any relationships between flow and

geomorphology because of lacking bed-forming discharges during the study.
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Figure 3. Mean contributions of mean « and g diversities to y diversity of (a)
hydrogeomorphological diversity (flow and streambed geomorphology), (b) biodiversity
including three microbial guilds (T-RFs of prokaryotic 16S rRNA genes abbreviated as
bacteria, autotrophic morphotypes abbreviated as autotrophs, phagotrophic protist
morphotypes abbreviated as phagotrophic protists), and (c) the diversity of areal nitrogen
uptake rates and efficiencies as proxies for ecosystem functioning. Data for each scale and
diversity are averaged over all seasons and streams, where the number of data points is

shown in parentheses in the axis labels.

Flow diversity and biodiversity

Turbulence intensity (flow « diversity) did not significantly affect any diversity of
microbial guilds (Fig. 2), demonstrating that species richness can be equally high over a wide

range of natural flow variability. However, species identity might still be affected by shifts in
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species differing in their tolerance towards hydraulic forces (see Risse-Buhl et al.,*® for more
detailed community analyses). By contrast, spatial () flow diversity significantly affected S
diversity of autotrophs (F1,12 = 6.13, p = 0.029) and phagotrophic protists (F1,14 = 11.55,

p =0.004). The latter was also significantly affected by the overall flow diversity, combining
both turbulence intensity and spatial variability of the mean flow (flow ydiversity, F114 =
16.04, p = 0.001, Fig. 2). Following the hydrogeomorphological diversities, the y diversity of
the studied microbial guilds increased with spatial scale due to an increase in S diversities.
This result followed the prediction of the dual scaling law that states that species richness

increases with increasing spatial scale and environmental heterogeneity®.

Contrary to bacteria and phagotrophic protists, the overall diversity of autotrophs (y
diversity) showed higher contributions of the mean « diversity, which was similarly high for
both spatial scales (69% and 63% for the meso and reach scale, respectively, Fig. 3b). The
overall diversity of autotrophs was high already at the small scales, which implies that flow
variability induced by riffle-pool sequences is of minor importance at least for the
morphotype diversity of this microbial guild. The autotrophic community that developed
during biofilm maturation can act as an ecosystem engineer, which might results in a
homogenization of communities between spot scales by modulating their microenvironment

and creating similar biofilm architectures and flow conditions®’.

Bacterial diversity did not respond to flow diversity, whereas flow diversity at larger
scales affected the diversity of autotrophs and phagotrophic protists. Phagotrophic protists
and most autotrophs are relatively large (compared to bacteria) and show a large phenotypic
diversity with diverse adaptations to flow and corresponding preference for particular
hydraulic niches®-%, This makes the sorting of species by hydraulic forces likely. In contrast
to phagotrophic protists, the dominant bacterial species occurred irrespective of the turbulent

kinetic energy at the spot scale'®. Here, we confirm this finding also for the flow diversities at
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larger spatial scales. The lifestyle of bacteria is characterized by smaller organismic size, high
production of protecting and fixing extracellular polymeric substances®™-¢?, and a high
phenological plasticity®®. All these features make them highly ubiquitous and resistant to
physical forcing in the stream environment. The high phenotypic plasticity of bacterial
genotypes potentially enables the same genotype to occur with adapted phenotypes in
different hydraulic niches. However, the high contribution of £ diversity to the overall »
diversity (Fig. 3) suggests a differentiation and the existence of distinct communities at
different spots, which were unrelated to flow diversity (Fig. 2). It is important to note that the
bacteria were analyzed using molecular methods based on 16S rRNA genes. In contrast,
autotrophs and phagotrophic protists were microscopically counted based on phenotypic and
morphological features (see methods). As habitat adaptation occurs at the phenotype level and
particularly bacteria show extremely high phenotypic plasticity within particular genotypes,
the phenotypic bacterial diversity may show different patterns compared to the genotypic

diversity analysed here.

In agreement with previous results®®, the mean o diversities of bacteria (F1,13 = 4.90, p =
0.045) and phagotrophic protists (F1,14 = 16.98, p = 0.001) were significantly affected by
season (Fig. 2), indicating that the variability in environmental conditions (e.g., nutrients,
light, temperature, the seasonal succession of predators and prey) constrained biofilms along

the whole stream reach (i.e., large-scale effects).

Flow and functional diversity

Mean « and £ diversities of the nitrogen uptake efficiency at the meso scale contributed
equally to its ydiversity (Fig. 3c), implying that the variability of nitrogen uptake efficiency
within individual riffle and pool structures was comparable to the variability between

structures of the same type. For areal nitrogen uptake rates, the mean « diversity was slightly
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higher than the £ diversity (58% and 42% of the y diversity, respectively). At the reach scale,
the g diversity of nitrogen uptake efficiencies was 2.5 times larger than the corresponding
mean « diversity. However, both diversities were similar for areal nitrogen uptake rates (Fig.
3c). As the uptake efficiency corresponds to the biomass-specific uptake rate, this finding
suggests that the conditioning of biomass within and between meso scale structures supports

similar, i.e. less diverse, uptake rates despite different flow conditions.

Turbulence intensity (flow a diversity) had no significant effect on the diversity of
nitrogen uptake rates or nitrogen uptake efficiencies (Fig. 2). However, we found that the
spatial variability of the mean flow velocity (flow g diversity) influenced the g diversity of
the nitrogen uptake efficiency (F1g = 10.69, p = 0.011) and the overall () flow diversity
influenced the y diversity of nitrogen uptake efficiency (F1,g = 8.78, p = 0.018). The lack of
influence of spatial variations in flow o diversity on nitrogen uptake efficiencies appears
surprising, as the maximum rate at which biofilms can take up nitrogen from the stream water
is limited by turbulent mass transfer at the streambed®. While previous analysis of the same
data demonstrated that nitrogen uptake efficiencies in the studied streams increased with
increasing near-bed turbulence following a universal scaling relationship®, this relationship is
removed by the normalization of alpha diversities with the square of the mean flow velocity.
Spatial variations in flow a diversity, which represent different relationships between
turbulent kinetic energy and mean flow velocity due to different streambed roughness, were
small when comparing pools and riffles. The spatial variability in turbulent kinetic energy,
which results from variations in mean flow velocity, is therefore represented by the flow S
diversity, which was positively related to the observed nitrogen uptake efficiencies in

accordance with the previous studies.

To analyze whether the effects of flow on nitrogen uptake diversity are mediated by

relationships between biodiversity and functional diversity, we related the diversity of
15
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individual microbial guilds to the diversity of the areal nitrogen uptake rate and uptake
efficiency, while considering stream and season as additional explanatory variables.
Diversities of autotrophs were not significantly correlated to the diversities of nitrogen uptake
rates or efficiencies (Fig. S3-S5). However, the spatial variability of the mean flow was
correlated with both the £ diversities of autotrophs (see previous section, Fig. 2) and the
nitrogen uptake efficiency (Fig. 2). As described above, autotrophs exhibited high « and low
S diversities (Fig. 3b), suggesting that the effects of flow diversity on the diversity of nutrient
uptake were unrelated to the identity of particular microbial species, but rather to their

functional performance.

Our approach to quantifying the diversity of a single function diverges from the
common approach to measure the diversity of multiple functions, known as
multifunctionality. Nevertheless, our approach highlights that ecosystem functions are not
homogenously distributed over space, and there are communities within stream reaches with a
higher contribution to whole-ecosystem function than others. We demonstrated that a
significant part of this variation is driven by habitat heterogeneity, quantified as flow
S diversity. Predicting the location of those functional hotspots based on measures of
hydrogeomorphological diversity is a promising avenue for future research. From a
methodological point of view, our results are also important for designing whole-stream
uptake studies that usually sample a few spots to characterize whole-ecosystem function.
Knowing where functional hotspots are located may help to prevent undersampling the true

functional variation and avoid erroneous estimates of whole-ecosystem functioning.

Contrarily, the mean areal nitrogen uptake rate and efficiency (not their diversity) were
not related to «, S or ydiversities of different microbial guilds except for the mean « diversity
of bacteria (Fig. S6-S7). This is not surprising given the effects of flow diversity on the

diversity of the nitrogen uptake. This finding also contradicts laboratory studies with
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heterogeneous flows®?, where nitrogen uptake increased with species richness in algal biofilm
communities due to niche partitioning. These contrasting results may be due to large
differences in species richness between this particular laboratory experiments with a
maximum number of 8 species, and natural ecosystems, where functional redundancy and

dominance effects become important>®,

Temporal and spatial upscaling

Upscaling of measurements in space and time is of great importance in ecology and
biogeography?®®’. Furthermore, integration of events over time can be essential to explain
current patterns. Specifically, the species composition, abundance and morphology of

biofilms can be influenced by flow conditions during the last days or weeks.

The cumulative integral of the geomorphological « diversity of the streambed, which
was derived from cross-sectional transects available for 13 km of one of the study streams,
indicates that the geomorphological diversity strongly increased at scales larger than the meso
scale (Fig. S8b). Geomorphological diversity associated with riffles and pools at the meso
scale contributed <10%, while the highest diversity was observed at spatial scales between
100 m and ~2 km, which is similar to the reach scale and confirms the choice of this upper

scale in the empirical studies from which the data were adopted.

All sampling was conducted at nearly stationary discharge conditions that persisted for
at least two weeks before each sampling, and discharge magnitude was comparable between
samplings. Thus, the estimated flow o diversities include only the hydraulic scales of velocity
variance (turbulence intensity) but not the hydrological scales of flow variability. The specific
definition of the flow « diversity applied here allows for an easy extension of the concept to
include also longer-term temporal flow variations derived from long-term discharge

monitoring at both streams. By analyzing the cumulative integral of the power spectrum of
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the temporal flow variability (i.e., flow o diversities) derived from long-term discharge time
series, we found that the flow « diversity resolved in the measurements contributed, on
average only 20% to the long-term flow o diversity over 16 years (Fig. S8a). This
contribution varied between 2% and 70%, depending on the sampling spot. Most
contributions to the long-term flow a diversities were associated with seasonal discharge
variations at annual time scales. Discharge-related variations in mean flow velocity will not
necessarily translate into variations in turbulence intensity due to the inherent relationship
between turbulent kinetic energy and mean flow velocity. Instead, the low-frequency
temporal flow variability would rather result in different magnitudes and spatial arrangements
of mean flow velocities, and thus have similar effects on biofilms as the flow £ diversity in
our analysis. However, biofilm communities and functions vary with season in response to
other environmental constraints and we expect that diversities and their interrelations may
change with time. Furthermore, increasing drag forces and transport of suspended matter
during repeating high-discharge events at hydrological scales can temporarily reduce biofilm
biomass®® and eventually these hydrological variations might overrule/mask the effects of

season and stream at the scales investigated here.

The integration of temporal and spatial scales in diversity assessments remains a
challenging task, not only in ecology. Specifically, integration over time is still missing in
global assessments of human impact on freshwater biodiversity®®. Our data do not allow
predictions of how changes in temporal flow diversity might affect spatial and temporal
components of biodiversity and the diversity of functions. Therefore, we advocate for future
studies that should involve sampling of biotic and functional diversities over a range of spatial
and temporal scales. The framework presented here provides a valuable and physically sound
tool to evaluate the hydrogeomorphological diversities in relation to biodiversity and

functions within such assessments.
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Conclusions

The importance of hydrogeomorphological heterogeneity for biodiversity and functional
diversity in running waters has been repeatedly postulated. However, evidence has been
limited to particular spatial and temporal scales of habitat heterogeneity and metrics for
habitat heterogeneity are often descriptive (river bed form, substratum type, slope, etc.) rather
than rooted in physical principles. Here, we describe a novel diversity framework based on
variance partitioning of hydrogeomorphological variations and relate this to biodiversity and
ecosystem functioning across different spatio-temporal scales. The framework is routed in
basic hydraulic and morphodynamic research but provides significant drivers for biological
processes such as the importance of hydrogeomorphological £ diversity quantified as the

spatial variance of the time-averaged flow velocities and mean water depths.

Our framework is established and tested for microbial communities, but its universal
formulation makes it applicable to other organisms. It is transferable to other freshwater
ecosystems and ecosystem compartments such as lotic environments and the hyporheic zone,

and may include further environmental factors, such as temperature and light.

Hydrogeomorphological simplifications of running waters have reduced the complexity
and integrity of riverine ecosystems’?, reducing their biodiversity’* and functioning?.
Conservation of biodiversity and the services provided by the operational ecosystems is one
of the most important challenges we face as a society. Our framework facilitates integrative
studies on the interactions of biotic, functional and hydrogeomorphological diversity and will
thus ultimately lead to a broadened diversity concept in stream ecology based on an improved
knowledge on how biodiversity—functioning relationships are driven by

hydrogeomorphological diversity.
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Methods

Study sites

The measurements were conducted at two second-order, gravel-bed mountain streams
(Selke, N 51°41°11.5"°, E 10°15°34”’, Kalte Bode, N 51°44°33’, E 10°42°09"") in Central
Germany. Daily discharge data from 1921 (Selke) and 1951 (Kalte Bode) and discharge at 15
min intervals for more recent periods were available from gauging stations close to the study
sites. Long-term mean discharge was 1.52 m3 s, and 0.72 m3 s** and baseflow was 0.24 m3 s
and 0.18 m3 s* for Selke and Kalte Bode, respectively. The mean widths of the reaches were
almost identical for both streams (7.2 m at the Kalte Bode and 7.3 m at the Selke), whereas
the mean water level slope of the study reach at the Kalte Bode (0.82 %) was twice as high as
at Selke (0.39 %). The length of the study reaches was 588 m (Kalte Bode) and 510 m
(Selke), and both reaches were composed of riffle and pool sections with a mean length of 57
+ 56 m (mean + standard deviation). Assuming that the 84th percentile of a grain size
distribution (dgs) is a factor of 3.5 larger than the standard deviation of streambed elevations

k37 (see Fig. S1 in the Supplement), the relative roughness at the study reaches (dss < water

depth > -1 = 0.3) is at the upper end of the typical range of pool-riffle streams”.

Soluble reactive phosphorous (SRP) and dissolved inorganic nitrogen (DIN, sum of
nitrate, ammonium) concentrations were <0.003 mg SRP L* and 0.42-0.91 mg DIN L at
Kalte Bode and 0.01-0.06 mg SRP L™ and 0.55-1.72 mg DIN L at Selke. In comparison,
stream water SRP and DIN concentrations were up to 3 to 16 times and up to 2 times higher
in the Selke compared to the Kalte Bode, respectively.

Sampling strategy

We established and applied a novel framework for describing diversities using an
extensive data set, including flow velocity!®2253, streambed topography (measurements new
to this study), microbial guilds of biofilms'®, and biofilm nitrogen uptake>***. The adopted
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data are based on measurements that were conducted simultaneously at identical spatial
scales, except for biofilm diversity and nitrogen uptake, which were sampled in close vicinity
but not at the same spot. Data were collected during five sampling campaigns conducted in
two mountainous streams with contrasting nutrient backgrounds, respectively and covering

two different seasons.

Flow velocity, including turbulent velocity fluctuations, was measured at 533
sampling spots with an acoustic Doppler velocimeter (Vectrino Profiler, Nortek AS,
Norway)*2253, To ensure best-quality data, all measurements were conducted at the so-called
sweet spot of the instrument’s profiling range’®’’, which was located about 2.3 cm above the
streambed in all measurements. At each sampling spot (10 m), flow velocity was measured
for 20 min with a sampling frequency of 64 Hz. Streambed topography was mapped at
approximately 1x1 m patches along the stream reaches during four campaigns (in total 58

patches) to analyze geomorphological diversity (further details below).

For three out of the five field campaigns, the diversity of three microbial guilds of
epilithic biofilms, namely bacteria, autotrophs and phagotrophic protists was expressed as
species or genotype richness at a subset of flow sampling spots®. The biofilm was
mechanically removed by brushing and rinsing the stone’s surface twice with a clean tooth
brush and suspended in 30 mL sterile filtered stream water (pore size 0.2 um). The biofilm
suspension was homogenized by ultrasonic treatment, and subsamples were prepared for
terminal restriction fragment length polymorphism (T-RFLP) and microscopic observations.
General shifts in bacterial diversity were analyzed using 16S rRNA gene-based T-RFLP. The
diversity of autotrophs and phagotrophic protists was estimated by microscopic analyses of
subsamples. Cyanobacteria and green algae were grouped according to their cell morphology
traits in coccoid, comma-like, colonial, and filamentous morphotypes. Diatoms were

identified to the level of genera’®. Heterotrophic protists were identified alive to the lowest

21



453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

possible taxonomic level; ciliates and testate amoeba were identified to the genus or species
level®8L, flagellates to class or family level®?, and naked amoeba were grouped according to

their morphotype®.

Finally, two field campaigns included measurements of biofilm nitrogen uptake at a
subset of flow sampling spots upon adding a *°N labeled (99% enriched) ammonium chloride
and bromide as a conservative tracer for 24 h>. The tracer injection was 250 m (Kalte Bode)
and 136 m and 166 m (Selke summer and spring, respectively) upstream of the study reaches
to ensure complete lateral and vertical mixing®4. Areal nitrogen uptake rates and uptake
efficiencies (nitrogen uptake rates normalized by nitrogen biomass) were calculated based on

measured °*N enrichment in biofilm samples determined with mass spectrometry.

The data from individual spots were pooled according to two distinct spatial scales: the
meso scale (spatial extent of hydrogeomorphological habitats, i.e., riffle and pool, in total 8
riffles and 9 pools), and the reach scale (spatial extent of each of the two study reaches).
There were at least three spots pooled for larger scales, and we calculated diversities for each
season and stream, except for geomorphological diversities. The streambed surface was
stable, and we expected a near bank-full threshold for sediment movement, which was not
observed during and between the samplings. We thus pooled the measurements from all
seasons to estimate geomorphological diversities at the meso and at the reach scale for each

stream (Fig. 1 and Fig. S2 in the Supplement).

Geomorphological measurements and data analysis

Streambed roughness at the spot scale

The streambed topography was surveyed with a custom-made laser scanner”#. A line
laser (Z40M18S-F-643-LP60-V2, Z-Laser, Freiburg, Germany) was used to illuminate the
streambed, and the reflected light was observed by two underwater cameras (GoPro Hero3+

Black Edition, 48 fps, 1920 x 1440 px). The bottom elevation along the laser line was
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reconstructed from the location of the laser line in the calibrated field of view of the cameras.
Laser and cameras were mounted on a rack (Fig. S9a), which could be moved horizontally at
an adjustable height above the bottom. The rack was mounted on a rigid frame deployed at
each patch. After leveling the instrument frame, the laser light sheet was moved along several
lanes to scan the streambed topography within an area of 0.8 m x 0.6 m. During laser
deployment, the frame was covered with opaque fabric to improve the visibility of the
reflected laser line on the bed. The method was restricted to water depths > 10 cm; thus, very
shallow areas located mostly near the banks and areas with emerging stones could not be
surveyed (< 10% of the wetted width). Individual streambed elevation profiles were merged
into a digital elevation model (DEM) of the scanned area with a final horizontal resolution of
0.25 cm (Fig. S9b-c). Although the measurements were obtained at a higher resolution (on
average 0.01 cm), we limited the DEM resolution to reduce computational processing time.
Data gaps in the DEMs (resulting from, e.g., non-overlapping parts of lanes) were filled using
a radial multiquadratic function®. Streambed roughness k was estimated as the standard
deviation of the streambed elevation relative to a planar surface, which we fitted to the
observed DEM at each patch. k is equivalent to a characteristic vertical roughness height of
gravel beds®’. For each DEM, the distance to the water surface was added to the elevation

recorded by the scan.

Streambed roughness at the reach scale and beyond

For spatial extrapolation, longitudinal transects of streambed roughness and water depth
were obtained using a remotely controlled laser scan boat (LaSBo)’. LaSBo measurements are
based on the same laser triangulation method described above but provide longitudinal
transects of water depths along the boat trajectory. We measured three longitudinal transects

along one riffle (16 m) and two pools (64 m and 68 m) at Selke. The longitudinal transects
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were interpolated to a regular spacing of 0.25 cm to match the resolution of the DEMs. Also,

LaSBo operation was restricted to water depths > 10 cm.

Topographical data for a 13 km long stream section comprising the investigated study
site at Selke were available from the local water authority (i.e., 187 geo-referenced cross-
sectional surveys conducted at a daily mean discharge of 0.26 + 0.08 m3 s™* (mean + standard
deviation)). The distance between the surveyed cross-sections was 70 £ 28 m (mean +
standard deviation), and we interpolated the cross-sectional mean water depths to a regular

spacing of 70 m using the nearest neighbor.

Expression of diversities

Flow and geomorphological diversity

The flow « diversity (afiow) at each spot was calculated as the temporal variance in the
longitudinal (u), the transversal (v) and vertical (w) components of the measured flow velocity

normalized by the square of the mean flow velocity:

11 _
Uow = =~ 2ie1 (W — ) + v +w), (1)

where u = %Z{-":l u; denotes the mean longitudinal flow velocity and N the number of

samples in the velocity time series measured at each spot (note that the mean values of the
transversal and vertical velocity components are zero (v = w = 0) after alignment of the

measured velocities with the mean flow direction).

Flow ydiversity (yrow) Was calculated by concatenating velocity time series measured at

individual spots at the meso or the reach scale for each measurement campaign as:

1 1 1 1]
Yflow = @?n ;l=1ﬁ évzl ((uij - (u))z + vizj + Wizj)’ @
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523  with (u) representing the temporally and spatially averaged flow velocities from n different

524  sampling spots within the respective spatial scale ((i) = % ?:1% N, u;;). A minimum
525  number of three velocity measurements was chosen to calculate flow y diversities at each

526  spatial scale.

527  Finally, gdiversity describes the spatial variability obtained from the additive definition of
528 diversities (# = y— a). Beta flow diversity (frow) at the meso and reach scale were calculated

529 as:

530 Biow = Yflow — (aﬂow>, (3)

531  with (ag.w) representing the mean value of all flow « diversities observed at the

532  corresponding scale (see Table 1).

533 While flow diversities were calculated at all spatial scales based on pooled flow

534  velocity measurements at the spot scale, geomorphological diversities were handled slightly
535 differently. The geomorphological « diversity (amorpho) Was calculated as the variance of
536  water depth h normalized by the square of the mean depth at each patch:

11

537 Omorpho = 2N §V=1(hl_j - (h))z, (@)

538 where (h) = iZ’-": h; denotes the mean water depth and N the number of grid points in the
N&i=1

539 DEM for each patch. ymorpho diversity at the meso and reach scale was calculated by

540 combining all DEMs within the respective spatial scale as:

1 1 1
541 Ymorpho = W 7;:1; ?]:1 ((hij - ((h»)z); (5)

n
542  with ((h)) representing the spatially averaged mean water depth from n patches ({((h)) =

1laon 1

543 —Y

X1 hij.

544 Pmorpho Tor the meso and reach scale was calculated from:
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:Bmorpho = ¥Ymorpho — (amorpho>,

(6)

With (@merpho) representing the mean values of all amorpho Observed at the corresponding scale

(see also Table 1).

Table 1. Overview of the &, #and y components of hydrogeomorphological diversity

according to the proposed framework based on variance partitioning of flow velocity and

streambed geomorphology at different spatial scales. Angular brackets refer to the overall

spatial mean values at the corresponding scale.

Diver- Flow . I Streambed . A
Scale . . Physical description Physical description
sity velocity geomorphology
. Spatial variance of water
Temporal variance of flow depths normalized b
Temporal  velocity normalized by the P v
- Streambed the square of the mean
Spot a flow square of its temporal
iabilit mean (turbulence roughness water depth (square of
variabiiity 7 . the relative streambed
intensity squared)
roughness)
. . . Spatial variance of the
. Spatial variance of time-
Spatial Iy mean water depths at
averaged flow velocities (Mean) Water
B flow . L the spot scale
L normalized by the square | depth variability .
variability . normalized by the square
of overall mean velocity .
Meso, of their overall mean
Reach . . .
Total temporal and spatial Total spatial variance of
Overall variance of flow velocity Overall water depths normalized
4 flow normalized by the square | geomorphological by the square of their
diversity of their overall mean diversity overall mean

(r=<a>+p)

Temporal and spatial upscaling

(r=<a>+p)

For the Selke, power spectral densities of the longitudinal velocity component were

estimated for each 20-min measurement using Welch’s method® with 50% overlap and a

Hamming window function. Spectra were normalized by the square of the mean flow

velocity. The normalized velocity spectra represent the frequency distribution of components

of the flow « diversity (see also equation (1)). The individual spectra from the 20-min flow

measurements were log-averaged, and the mean spectrum and the 5% and 95% percentiles

were calculated. Next, we constructed a composite spectrum of velocity fluctuations by
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combining: (1) the log-averaged spectra and their percentiles (frequency range from 3x10* to
4x1072 Hz); (2) the spectra of the mean velocities calculated from 15 min interval discharge
data for three months (frequency from 5x10* to 1x10” Hz); and (3) the mean velocities
calculated from daily mean discharge data for 16 years (frequency from 6x107 to 3x10° Hz).
The discharge data were converted to flow velocities using a cross-sectional topographic
transect and water level data at the gauging station. The cumulative o diversity for increasing
time scales was estimated as the cumulative integral of the composite spectral density from
the highest to lowest resolved frequency, i.e., the cumulative variance for increasing time

scales.

Similar to flow velocity, a composite power spectrum of water depth variations was
estimated by combining the wavenumber spectra of (1) all concatenated LaSBo surveys at the
Selke (wavenumber from 2x10? to 102 m™) and (2) cross-sectional mean water depths
calculated from the 13 km survey at the Selke (wavenumber from 7x107 to 1x10* m™). All
spectra were normalized by the corresponding squared mean water depth. The cumulative,
normalized variance for increasing length scales was estimated as cumulative integrals of the
spectral density function from high to low frequencies. The unresolved wave number range

from 7x107 to 10 m™* was linearly interpolated for integration.

Diversity of microbial guilds

a diversity of microbial guilds, namely bacteria, autotrophs and phagotrophic protists,
were represented by species richness at the spot scale'®. At larger spatial scales, the mean «
diversity of all spots within a pre-defined scale (meso or reach scale) was calculated. In
addition, ydiversity at the meso and reach scale was calculated by considering all species
found at the respective spatial scale. The difference between yand mean « diversity

represents S diversity, by adopting the additive definition of diversities. At the meso scale, we
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calculated diversities for riffles and pools separately for each season and stream resulting in

mean «, S, and y diversities for riffles and mean «, S, and y diversities for pools.

Diversity of biofilm nitrogen uptake

Similar to geomorphological diversity, the variance of spot-scale nitrogen uptake rates
and nitrogen uptake efficiencies within each riffle or pool normalized by the mean square was
the « component of uptake diversities (coefficient of variation, CV). To calculate mean «
diversities at the meso scale, we followed a similar approach as for biofilms averaging all
riffle and all pool « diversities separately for each campaign, resulting in a mean « diversity
for riffles and a mean « diversity for pools. Next, we calculated the CV for all spots in all
riffles and for all spots in all pools along the stream reach for each campaign as y diversities: y
(meso scale) ritfie IS the CV of uptake rates and efficiencies in riffle spots, and y (meso scale)
pool 1S the CV of uptake in pool spots along the reach. The g diversity of uptake in riffles and
pools was obtained by subtracting the mean « diversity from the corresponding y diversity for
each campaign. At the reach scale, we calculated the mean « diversity of uptake from all
meso-scale « diversities for each campaign and the y diversity as the CV across all spots
within the reach. Finally, we subtracted the mean « diversity from the y diversity to achieve
the g diversity at the reach scale.

Statistical analyses

We were interested in identifying whether each of the three components of flow
diversity (e, fand ») was a significant predictor of the corresponding diversity component of
geomorphology, microbial guilds, nitrogen uptake rate and nitrogen uptake efficiency at
identical scales. We expected a linear relationship within the range of diversities observed and
used a linear regression model with a fixed effect intercept to examine the relationship

between the predictor variable flow mean « diversity and the response variable
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geomorphological mean « diversity. For each model, data from both streams, all scales and
seasons were used, and we included stream and season as additional explanatory variables as
we expected that differences in ambient environmental factors associated with stream or
season explained a part of the variation in the response variable. Stream and season were
added to the model without an interaction term. We refrained from testing for differences
between meso- and reach scale because we only sampled one reach per stream. Data were
log-transformed if residuals were not normally distributed (Shapiro-Wilk Test). All test

results were regarded as significant if p < 0.05.

Furthermore, we tested for significant relationships between biodiversity and ecosystem
functioning. We tested whether the three components of microbial diversity («, £ and y) were
significantly related to the corresponding diversity component of nitrogen uptake rate and
uptake efficiency, as well as to the mean total nitrogen uptake rate and uptake efficiency.
Linear regression models were fitted to the data as described above. All tests were performed

in Matlab (version R2019b; MathWorks, Natick, Massachusetts) using the “fitim’ function.

Data Availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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