

1
2 **Integrating ecosystem functioning into the assessment of**
3 **stream and river health**

4
5
6 Weitere M.¹, Anlanger, C.¹, Brauns, M.¹, Butturini, A.², Cunha, D.G.F.³, Fink, P.⁴, Finkler,
7 N.⁵, Gücker, B.⁶, Lorke A.⁷, Mendoza-Lera C.⁷, Menéndez, M.², Muñoz, I.², Pasqualini, J.¹,
8 Sabater, F.², Polvi-Sjöberg, L.⁸, von Schiller, D.², & Sponseller, R.A.⁸

9
10
11 ¹*Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Brückstr. 3a,
12 39114 Magdeburg, Germany*

13
14 ²*Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)¹ Universitat de
15 Barcelona, Barcelona, Spain*

16
17 ³*Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos, Universidade de
18 São Paulo, São Paulo, Brazil*

19
20 ⁴*Institute for Zoology, University of Cologne, Cologne, Germany*

21
22 ⁵*Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå,
23 Sweden*

24
25 ⁶*Department of Geosciences Federal University of São João del-Rei, , São João del-Rei, Brazil*

26
27 ⁷*Department of Natural and Environmental Sciences, RPTU University Kaiserslautern-Landau,
28 Landau, Germany*

29
30 ⁸*Department of Ecology, Environment and Geosciences, Umeå University, Umeå, Sweden*

31
32
33
34
35
36
37
38 Key words: Stream and river assessment, ecological functions, ecological processes,
39 functional indicators, restoration success

48 **Abstract**

49 Assessing the ecological status of streams and rivers is key to deriving appropriate restoration
50 measures and evaluating restoration success. Established assessment methods are usually based
51 on 'structural indicators', most often focused on the composition of biological communities in
52 restored versus reference sites or reaches. Yet, in recent years, an increasing number of studies
53 have demonstrated the response of ecological functions (e.g., metabolism, nutrient uptake,
54 decomposition) to a range of stressors, highlighting the potential use of these as more realistic
55 and dynamic descriptors of restoration outcomes. Despite this progress, we still lack clear
56 criteria for the use of functional measures as tools to assess restoration. Here, we reflect on the
57 benefits and limitations of integrating ecological functions into assessments of restoration and
58 identify steps and research questions to solve if we aim to use these to judge success. We
59 identify three major benefits associated with functional assessments: First, many ecosystem
60 functions respond faster to restoration when compared to structural indicators, i.e., at timescales
61 more relevant for communication and possible adjustment. Second, shifting boundary
62 conditions, as a result of climate change and the establishment of invasive species, make it less
63 likely that a system will return to past reference communities in the future. Thus, generating
64 targets for functional properties that support the most essential characteristics of river systems
65 may be crucial for maintaining ecological health under environmental change. Finally,
66 integrating functions into structural assessment may increase our diagnostic potential and thus
67 provide a more ecosystem-wide perspective on restoration or mitigation responses. However,
68 to implement functional assessments in a management context, we need to agree on a roadmap
69 and solve two main challenges. First, given the large number of potential functions, we need to
70 resolve a set of core processes that are relevant to managers. Here we suggest a set of functions
71 that fulfill the criteria of being relatively easy to measure, yet provide a meaningful and
72 integrative representation of the ecosystem and its changes following restoration. Second, we

73 need clear and objective functional goals, e.g. in relation to reference conditions, or reference
74 to emerging water quality challenges. Given the strong benefits of integrating functions into
75 aquatic ecosystem assessment, we strongly encourage scientists and practitioners to further co-
76 develop their broader implementation and consider this paper a roadmap to tackle the next steps
77 towards a broader implementation.

78
79
80
81
82
83
84
85
86
87
88
89
90
91

Unpublished manuscript

92 **Assessment of stream and river health**

93 Globally, streams and rivers are under stress from a wide range of physical, hydrological, and
94 chemical alterations, which affect their biodiversity and functionality and the services they
95 provide to society (e.g., Vörösmarty et al., 2010). Monitoring and assessment are key to
96 detecting river degradation, deriving appropriate restoration measures, and subsequently
97 judging the success of restoration measures. Such assessments can focus on a range of aspects,
98 including water quality, biodiversity, or performance of specific taxonomic groups of interest.
99 Yet, given that this range of endpoints may generate competing societal interests and unwanted
100 tradeoffs, there is an increasing interest in using more inclusive assessments, e.g., of ‘ecological
101 integrity’ and ‘health’ as management goals, with the assumption that these integrate and
102 encapsulate the diversity of ecosystem services rivers provide. In this context, ecological
103 integrity in running waters can be judged in terms of both *structural* variables, including the
104 composition and biodiversity of various organismal groups, and *functional* variables (e.g.,
105 organic matter decomposition, primary productivity), which reflect how a system actually
106 works ecologically or biogeochemically. Yet, despite recent calls for greater consideration of
107 functional responses (e.g., Palmer and Ruhi 2019), most assessments of river health continue
108 to be based on community structure, assuming that structural metrics are a reasonable proxy for
109 ecosystem integrity overall (e.g., the ecological health assessment in the context of the EU-
110 Water Framework directive, Hering et al., 2010).

111
112 The longstanding emphasis on structural responses to assess river condition and judge the
113 outcome of restoration is not necessarily misplaced: such metrics are well-known to capture
114 changes in water and habitat quality in response to a range of anthropogenic stressors (e.g.,
115 Bonada et al. 2006). Further, knowledge about structural properties from past assessments of a
116 given system, or from suitable reference systems, can provide relatively straightforward

117 ‘targets’ for managers. However, despite this track record, diversity and composition metrics
118 also routinely fail to show clear responses to restoration (Leps et al. 2016; Palmer et al. 2010)
119 or help us mechanistically understand how an ecosystem has changed as a result of degradation
120 or recovery after management. We think this shortcoming reflects three key problems:

121

122 First, a lack of response can occur when system stressors or restoration actions do not fully
123 target the indicator used and/or its requirements for recovery (Hering et al., 2010; Palmer et al.,
124 2010). This is a notable issue for structural metrics, like community composition and diversity,
125 which in river systems can be linked to multiple drivers beyond the local habitat, including
126 properties of the broader catchment and drainage system (Bernhardt and Palmer 2011) and even
127 the broader species pool and the dispersal capacity of species (Poff 1997). Such complexity
128 makes it difficult to understand what attributes of the river and surrounding landscape should
129 be restored to realize recovery in structural metrics locally. This can be a particular problem for
130 restoration when (i) there are strong constraints to biotic communities operating at scales larger
131 than the restoration effort (Griffith and McManus 2020a and b; Polvi et al. 2020) or if (ii) that
132 broader environmental conditions are shifted such that the composition of species best adapted
133 for a given ecosystem has also changed (Schindler et al. 2015). With respect to shifting
134 boundary conditions, especially in the context of climate change, there is ongoing debate about
135 whether current reference conditions can (or should) be considered as structural targets for the
136 future (Harris et al. 2006). To maintain core ecological processes that underpin ecological
137 integrity, it will be necessary that communities change to include species better adapted to new
138 sets of baseline conditions.

139

140 Second, a strictly structural focus can also limit our ability to evaluate and communicate
141 ecosystem change or restoration success at short enough time scales to enable adaptive

142 management. Recovery times in response to river restoration can vary greatly within and
143 amongst the taxonomic groups often used to evaluate recovery (e.g., algae vs.
144 macroinvertebrates vs. riparian plants), and such differences can contribute to seemingly weak
145 responses to management actions, depending on when this is assessed. For plants or animals
146 with longer inherent recovery rates, it may be difficult to know if a restoration measure was
147 simply unsuccessful or if communities needed more time to recover due to dispersal limitation
148 or the slow rates of ecological succession (e.g., Muotka et al. 2002; Hasselquist et al. 2015). By
149 comparison, foundational ecosystem processes mediated by communities of algae and bacteria
150 (e.g., primary production or community respiration) have the potential to respond to restoration
151 more rapidly (Arroita et al. 2018), allowing communication of outcomes that can enable
152 management responses.

153

154 Third, our ability to *diagnose*, or mechanistically understand, which particular stressor or
155 stressor combination explains the observed degradation can be limited when based solely on
156 structural variables. As noted, compositional indices can be difficult to link to proximate
157 drivers, which makes informed management decisions difficult. By comparison, ecosystem
158 process rates are often directly responsive to changes in the physical and/or chemical
159 environment, enabling us to detect specific stressors that alter a given ecosystem process. These
160 responses can be highly predictive and are often well-grounded in theory, including the
161 temperature dependence of biological processes (Cross et al. 2015), photosynthesis-irradiance
162 (PI) relationships (Hill et al. 1995), nutrient uptake kinetics (Dodds et al. 2002), and the
163 thermodynamics of microbial metabolism (Hedin et al. 1998). Such relationships provide a
164 means of understanding and predicting how stressors act and how the release of stressors, as
165 achieved by restoration mechanisms, mechanistically reshape basal processes that underpin a

166 range of structural properties over longer periods (e.g., Dudley et al. 1986). In this sense, the
167 inclusion of functional variables may help us detect relevant stressors.

168
169 For all of these reasons, there is a call to incorporate functional indicators into stream
170 assessment in general and into the assessment of restoration success in particular (e.g., Palmer
171 and Ruhi 2019, von Schiller et al. 2017). Indeed, given the list of ecosystem services that we
172 rely on from running waters, a singular focus on recovery of biodiversity and viable populations
173 is likely insufficient to inform us on how restoration alters other key functions these systems
174 support (e.g., nutrient uptake). Despite this, including measures of functioning as assessment
175 tools is often not straightforward and is plagued by both practical and conceptual limitations.
176 Here, we critically analyze the potential strengths and limitations of applying ecological
177 functioning as a tool to assess river restoration success. On this basis, we present what we see
178 as key steps that may be taken to better implement function-oriented assessments.

179
180 **Consideration of ecological functioning in stream assessment**
181 Current environmental legislation (e.g., the European Water Framework Directive; WFD)
182 already includes a recommendation that structural *and* functional attributes be considered in
183 assessments of healthy aquatic ecosystems. In fact, there is a surprising discrepancy between
184 the targets of existing water and nature legislations and the targets that are, in practice, most
185 often implemented into current freshwater management. For example, the European Water
186 Framework Directive (art. 21) defines the ecological status as ‘*...an expression of the quality*
187 *of the structure and functioning of aquatic ecosystems ...*’. The European Biodiversity Strategy
188 2030 (art. 2.2.7) mandates that ‘*Greater efforts are needed to restore freshwater ecosystems*
189 *and the natural functions of rivers ...*’. Finally, the Convention on Biological Diversity
190 (Strategic Goal B, target 8) requests that ‘*By 2020, pollution, including from excess nutrients,*

191 *has been brought to levels that are not detrimental to ecosystem function and biodiversity.'*

192 Ironically, while ecosystem functions are explicitly mentioned as targets for protection in these
193 respective texts, current methods to assess ecosystems or restoration success often lack
194 consideration of any measure of functioning.

195

196 'Function' and 'functioning' as terms in ecology can be ambiguous, refer to a range of
197 phenomena, and be difficult to operationalize empirically (Jax 2005). In river science,
198 functioning *writ large* can include a wide diversity of potential variables connected to a range
199 of scientific disciplines, from primarily physical processes related to hydrology and sediment
200 dynamics, to microbial processes that govern biogeochemical transformations and material
201 retention, to processes reflecting resource consumption and energy transfer by communities and
202 food webs (e.g., Palmer and Ruhi 2019, von Schiller et al. 2017). This potential set of functions
203 operates across a broad range of spatial and temporal scales, incorporates different levels of
204 organization, and is shaped by varying contributions from abiotic and biotic drivers. Further,
205 inherent differences in the scale at which we measure different processes (e.g., litter
206 decomposition vs. ecosystem metabolism) complicate our ability to connect a given functional
207 metric to local restoration efforts with confidence (Young et al. 2008). Finally, because these
208 processes underpin different ecosystem services that rivers provide (e.g., from flood mitigation
209 to water purification to healthy food webs), whether strongly optimizing for one such goal may
210 enhance or diminish other goals is not always clear, and may cause unwanted ecological or
211 environmental quality outcomes. Thus, despite calls for incorporating functioning into
212 assessments of river restoration outcomes, deciding on which functions we should consider and
213 how to interpret them remains a limitation.

214

215 In our view, successfully implementing functional measures into assessments of stream and
216 river restoration is currently limited by two main issues. First, we need a clearer foundation for
217 selecting core functions. These functions should be sufficiently sensitive to capture
218 environmental changes caused by degradation and recovery following management actions and
219 align with the precise monitoring targets and restoration goals (see below). However, they
220 should also be practical in the sense that they are relatively easy to estimate by scientists and
221 managers alike. While the field at large continues to develop and refine ever-advanced methods
222 to characterize stream and river functioning, the practicalities of incorporating these into
223 management require scrutiny. Second, we need to advance a clearer framework for judging or
224 interpreting functional metrics with appropriate goals and values. Goals could be either
225 narrowly focused (e.g., optimizing a given function) or more broadly seek ecosystem health.
226 The latter goal needs a clear framework for deciding which functions and which values of these
227 functions actually capture ecosystem health. Finally, it may be important to advance beyond a
228 pure indication of ecosystem health and consider how ecological functioning can aid in efforts
229 of diagnosis, i.e., in detecting which are the most important stressors causing ecosystem
230 degradation in a multi-stressor context.

231

232 **Moving forward, I: Selection of appropriate functions**

233 To comprehensively assess river ecological health and its recovery following restoration, we
234 suggest selecting key ecosystem functions following the criteria of 1) alignment with
235 management objectives, 2) practicality and suitability, and 3) integrative insight and potential
236 value for diagnosis.

237

238 ***Criterion 1: Alignment with management objectives***

239 Functional assessments need to be anchored by metrics that are clearly aligned with the intended
240 ecological or water quality target and specific restoration goals. If restoration aims emphasize
241 or optimize certain functions and services, then indicators need to be clearly linked. For
242 example, if the goal is to improve the quality of receiving waters such as drinking water
243 reservoirs, functions such as nutrient retention and transformation are key. Functional metrics
244 that are related to nutrient uptake rates or key transformations (e.g., primary production or
245 denitrification) as well as hydrological correlates (e.g., water residence time) should be
246 prioritized over metrics like consumer biodiversity or food web stability (Bernot et al. 2010).
247 By comparison, restoration in remote settings without major water chemistry problems could
248 be explicitly aimed at improving habitat quality, connectivity, and recruitment of stream and
249 riparian organisms (Nilsson et al. 2015), and here, metrics linked to the functioning of
250 consumers should be prioritized (Franier et al. 2018). Aligning metrics with objectives will
251 strengthen the feedback loop between restoration actions and environmental outcomes,
252 enhancing the accuracy of functional indicators as proxies for restoration success, allowing for
253 more targeted improvements to river health.

254
255 However, assessment and restoration often target more general quality goals such as “ecological
256 health” or “ecological status” rather than a specific goal such as self-purification or fish
257 production. This holistic approach is useful as it optimizes multiple attributes of an ecosystem
258 with fewer risks for unwanted tradeoffs. Such a perspective is, for instance, central to
259 assessments in the context of the European Water Framework Directive, which assesses the
260 “ecological status” based on different communities including benthic micro-algae, invertebrates
261 and fish (Hering et al. 2010). Integrating functions into such assessments of the ecological status
262 raises the question of which functions represent the aquatic ecosystem in total and which of
263 these should we select for a meaningful assessment? According to the broad definition of

264 ecological functions (see section *Consideration of ecological functioning in stream*
265 *assessment*), several options exist in the literature (e.g., von Schiller et al. 2017). Here, we argue
266 that this large number of functions needs to be boiled down to a select few, which together
267 represent the ecosystem with a focus on biological processes (Table 1). Further, this selection
268 could span core processes of an ecosystem, from low to high trophic positions of the food web,
269 including: (1) (primary) production with rates of GPP or accumulation of pigments as measures,
270 (2) decomposition, with microbially dominated processes such as ER or microbial decay of
271 standardized organic matter (e.g., cotton strips, leaf litter breakdown in fine litter bags) and
272 processes dominated by the macrofauna (e.g., leaf litter breakdown in coarse litter bags), (3)
273 nutrient removal, with quantified or estimated (e.g., from metabolism) uptake rate as a measure,
274 and (4) processing of resources within the broader food web with food web complexity (or
275 related proxies) as a potential measure. These ecological measures would be usefully
276 supplemented by adding a core set of hydrodynamical measures (Table 1), which are often
277 lacking in standard assessments, but which strongly regulate biological communities and
278 processes (Anlanger et al. 2021). The proposed measures would integrate the different levels
279 of food webs while being at the same time focused, given the huge number of functions that
280 could be measured. We see this as a starting point for further discussions and will not exclude
281 that functions can be exchanged or other functions be added, depending on future discussions
282 and methodological developments.

283
284 As management goals change, new sets of more specific riverine functions may become
285 prioritized by stakeholders and policy makers. For instance, functioning related to carbon (C)
286 cycling, including mineralization, burial, and greenhouse gas (GHG) emissions to the
287 atmosphere, has not been a major focus of stream and river restoration assessments, despite this
288 being the primary impetus for restoration of other ecosystems (e.g., wetlands; Evans et al.

289 2021). However, this emphasis may change with growing recognition that rivers play an
290 important role in the regional-to-global C cycle and that this role is at least partially mediated
291 by aquatic biological processes (Battin et al. 2023). We also know that significant amounts of
292 carbon dioxide (CO₂; Raymond et al. 2013), methane (CH₄; Rocher-Ros et al. 2023), and
293 nitrous oxide (N₂O, Beulieu et al. 2011) are emitted from streams and rivers to the atmosphere.
294 Streams with high pollutant loads, such as those receiving urban and agricultural run-off, may
295 be hotspots of GHG concentrations and emissions (e.g., Xu et al. 2024), and restoration efforts,
296 particularly those resulting in a reduction of sewage input and nutrient loads, may effectively
297 reduce these emissions (Wang et al. 2023). Considering functions related to C cycling is also a
298 key component of understanding and motivating dam removal efforts, where the transition from
299 a lentic to a lotic environment is associated with physical and redox changes that have important
300 implications for GHG emissions (McGinnis et al. 2016, Ammani et al. 2022, Bega et al. 2024a).
301 Beyond the active channel margins, river corridors can also be hotspots of carbon storage (e.g.,
302 in floodplains) and GHG emissions (McGinnis et al. 2016) and this recognition has raised the
303 question of how and whether restoration of this storage function could be used to obtain carbon
304 credits (Hinsha and Wohl 2023; Lininger and Lave 2024). Taken together, the growing interest
305 in the regional-to-global C cycle by society and policymakers may motivate greater focus on C
306 cycling functions in assessments of river restoration outcomes in the future.

307

308 ***Criterion 2: Practicality and spatial and temporal relevance***

309 Effective functional indicators must be practical while yielding meaningful insights, either into
310 specific management targets or into an ecosystem's overall state. Commonly suggested
311 functional metrics, such as organic matter decomposition and ecosystem metabolism, could
312 meet such standards due to their relatively straightforward measurement techniques and
313 equipment requirements, including modern optical dissolved oxygen (DO) sensors, the

314 availability of software for data analysis, and well-established protocols (Battin et al. 2023,
315 Tiegs et al. 2024). However, rates of whole-system metabolism are not always possible to
316 generate with confidence and require a range of supporting data related to the hydrology and
317 physics of a stream (Demars et al. 2015). Thus, proxy metrics using algal biomass accumulation
318 or high-frequency DO data (e.g., Canadell et al. 2021), as well as chamber-based approaches
319 (e.g., Lopez et al. 2025), could be more viable for practical use. Similarly, while often aligned
320 with restoration objectives, functional metrics related to stream nutrient retention and
321 denitrification rates also require specialized field and laboratory assays, making them less
322 practical for routine monitoring. Such issues could be overcome by developing more time-
323 and/or cost-effective methods (e.g., Covino et al. 2010). Further, increasing use of automated
324 sensors for water chemistry (e.g., nitrate; Kunz et al. 2017), as well as methods that leverage
325 nutrient mass-balance approaches (Von Schiller et al. 2015; Valett et al. 2021) could open up
326 new opportunities for assessing restoration effects on nutrient cycling and retention.

327

328 One challenge to using functional metrics for assessment is the potential mismatch between the
329 inherent scale of a given process (or process measurement) and the extent of the degradation
330 and management action (Wright 2021). The length of stream sections under consideration can
331 be highly variable, but is most often less than 500 m (Morandi et al. 2017), which, depending
332 on drainage size, may be insufficient to isolate functional responses using whole-system
333 approaches. For example, estimates of ecosystem metabolism from single-station DO methods
334 typically have a ‘footprint’ of 100’s of meters to kilometers, depending on ecosystem size, and
335 may thus greatly exceed the length of restored reaches (e.g., Hall et al. 2016). Two-station
336 approaches are an option here, provided sufficient travel time within the target reach, but these
337 require more care and effort to execute (Demars et al. 2015) and may be less practical for
338 managers. Similarly, while nutrient uptake lengths can be relatively short (10^1 - 10^2 m) for small,

339 nutrient-poor streams, these can also greatly exceed the length of a restored reach, depending
340 on the solute in question, nutrient supply relative to demand, and the physical and hydrological
341 attributes of the system (Ensign and Doyle 2006). Conversely, functional metrics based on litter
342 decomposition or algal accumulation on tiles require measurements at relatively small scales
343 (e.g., sub-meter) and subsequent scaling up to the reach. Targeted microbial functions (e.g.,
344 denitrification) may be dynamic at even finer scales (mm). In contrast, the characteristic scales
345 at which consumer-driven functions operate can be highly variable, depending on the life
346 history traits of the relevant groups (e.g., Finlay et al. 2000). The point here is not to discourage
347 the use of any particular metric, but to highlight that selecting functions requires aligning the
348 inherent spatial scales of various processes with the scope of restoration.

349
350 The appropriate *temporal* scale for measuring functional responses is also a key consideration.
351 This is particularly true for microbial functions, which can show strong seasonal dynamics,
352 while traditional metrics rooted in the community structure of macrofauna integrate over longer
353 time scales. Generally, for biologically mediated functions, the timing and frequency of
354 sampling should reflect the life cycles of the organisms involved. Microbial-driven functions
355 (e.g., biofilm production) may require early and frequent sampling after restoration as these
356 recovery processes are likely to be rapid and are often seasonally variable (Bernhardt et al.
357 2018). By comparison, functions shaped by macroinvertebrate communities may be assessed
358 less frequently, but could take longer (5+ years) to respond to restoration (Pilotto et al. 2018).
359 Importantly, for both microbial- and macro-consumer-driven functions, any changes to riparian
360 cover that co-occur with restoration efforts may create even longer-term responses driven by
361 potential changes in incident light and/or inputs of organic matter resources as streamside
362 vegetation recovers (e.g., Bega et al. 2024b, Ramiao et al. 2022). The different temporal
363 responses are not a unique phenomenon for functional indicators, as also different structural

364 indicators (e.g., macro-invertebrate communities vs. micro-algae communities) also integrate
365 over time in very different ways. Nevertheless, integrating functions into assessment schemes
366 enhances the variation of time scales integrated by the indicators, as some functions, such as
367 metabolism, can respond to stressors almost immediately. This requires awareness of the
368 different temporal scales and matching the time scales of interest with those of the indicator
369 response. At the same time, there is an opportunity here to incorporate functional indicators that
370 are dynamic at short time scales, as these can potentially act as early warning indicators after
371 environmental change and early success indicators after restoration.

372

373 ***Criterion 3: Integration, complementary functionality, and diagnosis***

374 Unless restoration efforts have a specific aim (e.g., rehabilitating a given species), we argue
375 that functional metrics should target those that encompass multiple processes that integrate
376 trophic levels, ecosystems compartments, biological communities, and abiotic factors,
377 including hydromorphological and habitat diversity, while being focused on core metrics at the
378 same time (see above; Table 1). Such a ‘multi-functionality’ approach includes metrics related
379 to primary productivity, ecosystem respiration, decomposition, nutrient processing, and food
380 web processes, all of which capture complementary aspects of ecosystem health and integrate
381 biotic and abiotic interactions (Brauns et al. 2022). These metrics provide a comprehensive
382 view of stream ecosystems, linking nutrient cycling, energy flow, and resource consumption.
383 Such processes can capture the stability of a stream in terms of water quality, energy flow, and
384 food web support, which can in turn shed light on resilience and functional redundancy as
385 ecological attributes (Vugteveen et al. 2006). A multifunctional approach does not merely
386 substitute structural metrics with isolated functional ones but rather encompasses the dynamic
387 and interdependent nature of ecological processes. Multi-functionality also serves as an
388 insurance mechanism, safeguarding the ecosystem’s ability to function under diverse

389 environmental conditions and across temporal scales (Vugteveen et al. 2006, Brauns et al.
390 2022). Several recent publications suggest procedures to calculate multi-metric indices for
391 assessment of ecosystems (e.g., Assefa et al. 2023; Martins et al. 2020). Such metrics can be a
392 useful measure to communicate ecological health to the public and to the political arena. From
393 the ecosystem assessment and diagnostic perspective, however, multi-functional indices are
394 less useful as they may be too general to detect processes and underlying drivers linked to
395 degradation and recovery. Therefore, we do not elaborate on the calculation of integrative
396 multi-functional metrics here but rather recommend evaluating the different ecosystem
397 processes separately.

398

399 Functional metrics derived from ecosystem metabolism and organic matter decomposition are
400 notable in reflecting short- to longer-term ecosystem dynamics that integrate across levels of
401 organization (Young et al. 2008; Ferreira et al. 2020). Organic matter decomposition offers
402 insight into the activity of both microbial and invertebrate communities, linking terrestrial and
403 aquatic ecosystems through nutrient cycling and energy transfer processes (Rosemond et al.
404 2015). Metrics from ecosystem metabolism, including gross primary productivity (GPP) and
405 ecosystem respiration (ER), provide a more immediate measure of carbon production and
406 consumption within a system, capturing the functional balance between autotrophic and
407 heterotrophic processes (Bernhardt et al. 2018). Both sets of functional metrics reflect extant
408 ecosystem state but can also reveal shifts in function due to temporal change, such as those
409 following restoration, land use change, and natural seasonality (Griffith et al. 2013, Silva-Junior
410 et al. 2014, Kupilas et al. 2017). Finally, these functions can provide direct insight into the
411 mechanisms driving ecosystem change, serving as responsive indicators to various
412 anthropogenic stressors stemming from wastewater inputs (Arroita et al. 2019; Pereda et al.
413 2020), pesticides and nutrient enrichment caused by agricultural activities (Rossi et al. 2018),

414 wildfire (Betts & Jones Jr. 2009), as well as climate-induced hydrological extremes (Ulseth et
415 al. 2017).

416

417 Functions should also be selected to aid in diagnosis, which refers to our ability to generate a
418 mechanistic understanding of an ecosystem. Typically, functional metrics are more suitable for
419 diagnosis than structural metrics, because causes and effects are often more directly connected.
420 As one established approach, functional traits are used for diagnosis to identify relevant
421 stressors (e.g., Schuwirth et al., 2015). However, traits represent a potential for functions (e.g.,
422 high contribution of the feeding trait “shredder” indicates high potential for leaf litter
423 degradation) rather than a realized quantity of certain functions (e.g., the quantification of leaf
424 litter degradation with litter bags). The diagnostic utility derived from the measurement of
425 functions is not only useful in understanding restoration response, but is also crucial as it aligns
426 with management objectives that require rapid and accurate feedback on outcomes (Palmer and
427 Ruhi 2019). Obviously, not all functions are equally suitable as diagnostic indicators;
428 nevertheless, most functions could aid diagnosis by revealing whether or not certain restoration
429 measures result in changes to basal processes that are either directly related to desired outcomes
430 (e.g., nutrient removal) or have clear indirect linkages to consumer communities (e.g., algal
431 biomass accrual). Importantly, more work is needed that critically evaluates which functions
432 are useful in providing diagnostic information in response to restoration, including whether and
433 how different processes may help us anticipate future structural changes. For example, GPP
434 and its relation to algae standing stocks might be a much better (because more directly related)
435 indicator for eutrophication than changes in algal community composition. Seeking this
436 diagnostic type of understanding will allow us to assess ecosystems’ health more rapidly, to
437 identify relevant stressors and corresponding tailored management measures and to decide
438 whether or not we are moving toward restoration targets.

439

440 **Moving forward II: valuation of functional goals**

441 Once sets of functional metrics are selected, the next challenge is interpreting whether and how
442 measured process rates or functional proxies indicate ecological health and success or failure
443 of restoration or remediation. Importantly, how we judge functional indicators is closely linked
444 to what we are aiming to achieve. For example, documented increases in fish abundance and
445 biomass are straightforward hallmarks of success if the overall goal is to improve a river reach
446 for fish production. Here, judging functional indicators (i.e., evaluating success) is tailored to a
447 specific, pre-determined target. However, most monitoring programs and restoration efforts
448 target ecosystem health in a holistic sense, assuming that a broad set of indicators is the best
449 compromise to fulfill multiple functions and expectations (see above). Here, judging functional
450 indicators becomes less objective, as targets may be linked to the availability and utility of
451 reference systems and be sensitive to changing baselines. Our goal is not to argue for any
452 particular approach, as this must be a decision taken by society. Instead, we present the pros
453 and cons of the different approaches and essential steps to define appropriate goals.

454

455 Functional metrics can provide objective, concrete evidence of ecosystem recovery when
456 management goals are narrow and distinct. Here, judging degradation and recovery based on
457 single functions may be particularly easy for cases where overall water quality is good, and
458 habitat restoration is used to optimize the production of a target species (Louhi et al. 2014), or
459 if the goal is to remediate a severe water quality problem (e.g., hypoxia), unlocking a diverse
460 set of positive ecological outcomes (e.g., Arroita et al. 2019). Yet, in many cases, judging
461 success based on a single, focal function may be arbitrary, and optimization itself could come
462 at a cost to other water quality considerations, as ecosystem processes typically do not operate
463 in isolation. For example, judging success based solely on nitrogen removal (e.g., via

464 denitrification) could come at a cost to structural measures (e.g., biodiversity of
465 macroinvertebrates), but also create unwanted changes in greenhouse emissions, particularly of
466 CH₄ and nitrous oxide (N₂O; e.g., Mander et al. 2014). Further complicating this challenge is
467 that environmental drivers (e.g., nutrient loading) can have both positive and negative
468 associations with a given functional measure (Woodward et al. 2012), making it difficult to
469 judge whether an observed rate indicates management success or failure. More broadly, because
470 diversity measures like species richness are in many cases only weakly connected to a given
471 function (e.g., Cardinale et al. 2012), highly disturbed ecosystems may perform as well as
472 pristine ones, even if they have lost most of their diversity. Thus, having a single functional
473 metric as the only guideline may lead to a species-poor ecosystem, engineered to do one thing
474 well. Without accounting for potentially important biotic redundancy (e.g., a portfolio effect;
475 Schindler et al. 2015), we risk creating systems in which even the target function of interest has
476 low resilience to future disturbance or environmental change.

477

478 If management goals instead target holistic improvements in ecosystem health, functional
479 indicators are still critical to consider, but their valuation becomes more of a challenge as the
480 targets are less obvious. In most restoration programs, the aim is to restore ecosystems to
481 something approaching ‘natural conditions’, which in practice involves recovering a set of
482 structural and functional properties that match a local and historic (pre-human influence)
483 reference. This can be a challenge where the reference state is unclear and may require a
484 reconstruction of historical conditions and the related ecological attributes. Even when possible,
485 it is further problematic that reference conditions for functioning may be less evident than for
486 structural counterparts and may be particularly sensitive to shifting baselines (e.g., linked to
487 climate warming). One option here could be to anchor our expectations and judgements based
488 on a ‘functional stream typology’ where certain stream attributes result in predictable functions.

489 Such an effort could be guided by theory; for example, functioning related to metabolic rates
490 and ratios (e.g., GPP/ER) could be derived from predictions based on ecosystem size (e.g.,
491 Vannote et al. 1980), the seasonal timing of measurements (Bernhardt et al. 2018), and/or the
492 broader biome context (Dodds et al. 2015). In this context, we might derive desired endpoints
493 by synthesizing published rates of ecosystem processes from streams considered to be ‘near
494 reference’ in terms of human impacts. This approach would require testing at which spatial
495 scale values from the literature tend to differ (e.g., by biome, ecoregion, catchment, etc.) and
496 thus how reasonable these are for guiding targets locally. The advantage here could be the
497 development of targets that are applicable over broader spatial scales and also over broader
498 environmental gradients, including climate gradients.

499

500 Finally, in the event that restoration or remediation goals change, we may need to judge
501 functional indicators in new ways. For example, rather than looking backward for target
502 endpoints, functional indices may need to be assessed through the lens of how streams will
503 respond to future environmental change and how we define ecosystem health under these
504 conditions. This is hardly possible when having community structure-based indicators, as the
505 composition of the communities will change in the future in an unpredictable way. However,
506 using general functional properties of ecosystems, which are rooted in stream ecology theory
507 (see above) and which are valid under different environmental conditions, could be a way
508 forward to define functional goals that are robust towards shifting boundary conditions.

509

510 **Conclusions**

511 Integration of functional indicators into the ecological assessment of running waters provides
512 clear additive value to present, structurally-focused assessments. Functions can (i) act as an
513 early indicator for critical changes and restoration success, (ii) they still work as a quality

514 indicator even under changing boundary conditions and corresponding changes in the species
515 pool, and (iii) they increase, together with structural indicators, the potential for diagnosing
516 ecosystems. We are, however, not yet ready to explore these clear benefits and to implement
517 functional indicators into assessment routines. To reach this goal, future studies must shift the
518 focus from the pure description of responses of ecosystem functions to stress and its release
519 towards the implementation indicators into an assessment scheme. This paper should guide the
520 future effort to solve two major challenges, namely the selection of appropriate functions and
521 the definition and valuation of functional goals to provide the scientific basis for a broad
522 implementation of functional indicators into stream management and assessment.

523

524

525 **References**

526 Amani, M., von Schiller, D., Suárez, I., Atristain, M., Elosegi, A. & Marcé, R. (2022) The
527 drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions
528 from a temperate reservoir. *Inland Waters*, **12**, 451–462.

529 Anlanger, C., Risse-Buhl, U., von Schiller, D., Noss, C., Weitere, M. & Lorke, A. (2021)
530 Hydraulic and biological controls of biofilm nitrogen uptake in gravel-bed streams.
531 *Limnology and Oceanography*, **66**, 3887-3900.

532 Arroita, M., Elosegi, A. & Hall, R.O. Jr. (2019) Twenty years of daily metabolism show riverine
533 recovery following sewage abatement. *Limnology and Oceanography*, **64**, S77–S92.

534 Assefa, W.W., Eneyew, B.G. & Wondie, A. (2023) Development of a multi-metric index based
535 on macroinvertebrates for wetland ecosystem health assessment in predominantly
536 agricultural landscapes, Upper Blue Nile basin, northwestern Ethiopia. *Frontiers in*
537 *Environmental Science*, **11**, 1117190.

538 Battin, T.J., Lauerwald, R., Bernhardt, E.S., et al. (2023) River ecosystem metabolism and
539 carbon biogeochemistry in a changing world. *Nature*, **613**, 449–459.

540 Beaulieu, J.J., Smolenski, R.L., Dove, A., et al. (2011) Nitrous oxide emissions from
541 denitrification in streams. *Journal of Geophysical Research: Biogeosciences*, **116**, G01009.

542 Bega, J.M.M., Cunha, D.G.F., Menéndez López, M., Camacho-Santamans, A. & von Schiller,
543 D. (2024a) Dam removal effects on carbon processing in a mountainous Mediterranean
544 stream. *Science of the Total Environment*, **954**, 176672.

545 Bega, J.M.M., Saltarelli, W.A., Gücker, B., Boëchat, I.G. et al. (2024b). Effects of riparian
546 vegetation restoration and environmental context on ecosystem functioning in tropical
547 streams of southeastern Brazil. *Science of the Total Environment*, **906**, 167496.

548 Bernhardt, E.S., Heffernan, J.B., Grimm, N.B., Stanley, E.H., Harvey, J.W., Arroita, M.,
549 Appling, A.P., Cohen, M.J., McDowell, W.H., Hall, R.O. Jr., Read, J.S., Roberts, B.J., Stets,

550 E.G. & Yackulic, C.B. (2018) The metabolic regimes of flowing waters. *Limnology and*
551 *Oceanography*, **63**, S99–S118.

552 Bernhardt, E.S. & Palmer, M.A. (2011) River restoration: the fuzzy logic of repairing reaches
553 to reverse catchment scale degradation. *Ecological Applications*, **21**, 1926–1931.

554 Bernot, M.J., Sobota, D.J., et al. (2010) Inter-regional comparison of land-use effects on stream
555 metabolism. *Freshwater Biology*, **55**, 1874–1890.

556 Betts, E.F. & Jones, J.B. Jr. (2009) Impact of wildfire on stream nutrient chemistry and
557 ecosystem metabolism. *Freshwater Biology*, **54**, 1841–1853.

558 Bonada, N., Prat, N., Resh, V.H. & Statzner, B. (2006) Developments in aquatic insect
559 biomonitoring: a comparative analysis of recent approaches. *Annual Review of Entomology*,
560 **51**, 495–523.

561 Brauns, M., et al. (2022) A global synthesis of human impacts on the multifunctionality of
562 streams and rivers. *Global Change Biology*, **28**, 1711–1726.

563 Canadell, M.B., Lupon, A., Martí, E. & Sabater, F. (2021) High-frequency dissolved oxygen
564 sensors reveal ecosystem metabolism responses to hydrological variation. *Limnology and*
565 *Oceanography*, **66**, 1550–1564.

566 Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A.,
567 Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B.,
568 Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on
569 humanity. *Nature*, **486**, 59–67.

570 Covino, T.P., McGlynn, B.L. & Baker, M.A. (2010) Separating physical and biological nutrient
571 retention mechanisms in streams using tracer additions. *Limnology and Oceanography*, **55**,
572 133–147.

573 Cross, W.F., Hood, J.M., Benstead, J.P., Huryn, A.D. & Nelson, D. (2015) Interactions between
574 temperature and nutrients across levels of ecological organization. *Global Change Biology*,
575 **21**, 1025–1040.

576 Demars, B.O.L., Thompson, J. & Manson, J.R. (2015) Stream metabolism and the open diel
577 oxygen method: principles, practice and perspectives. *Limnology and Oceanography: Methods*, **13**, 356–374.

579 Dodds, W.K., López, A.J., Bowden, W.B., et al. (2002) N uptake as a function of concentration
580 in streams. *Journal of the North American Benthological Society*, **21**, 206–220.

581 Dodds, W.K., Gido, K., Whiles, M.R., Daniels, M.D. & Grudzinski, B.P. (2015) The stream
582 biome gradient concept: factors controlling lotic systems across broad biogeographic scales.
583 *Freshwater Science*, **34**, 1–19.

584 Dudley, T.L., Cooper, S.D. & Hemphill, N. (1986) Effects of macroalgae on a stream
585 invertebrate community. *Journal of the North American Benthological Society*, **5**, 93–106.

586 Ensign, S.H. & Doyle, M.W. (2006) Nutrient spiraling in streams and river networks. *Journal
587 of Geophysical Research*, **111**, G04009.

588 Evans, K.B., et al. (2021) River restoration can increase carbon storage but is not yet a suitable
589 basis for carbon credits. *BioScience*, **74**, 717–730.

590 Ferreira, V., Canhoto, C., et al. (2020) Organic matter decomposition in streams: the role of
591 biodiversity and ecosystem functioning. *Hydrobiologia*, **847**, 231–244.

592 Frainer, A., Polvi, L.E., Jansson, R. & McKie, B.G. (2018) Enhanced ecosystem functioning
593 following stream restoration: the roles of habitat heterogeneity and invertebrate species
594 traits. *Journal of Applied Ecology*, **55**, 377–385.

595 Finlay, J.C., Khandwala, S. and Power, M.E. (2002) Spatial scales of carbon flow in a river
596 food web. *Ecology*, **83**: 1845–1859.

597 Griffith, M.B., Kaufmann, P.R., et al. (2013) Interpreting biological condition indicators using
598 disturbance gradients. *Ecological Indicators*, **24**, 465–476.

599 Griffith, M.B. & McManus, M.G. (2020a) Consideration of spatial and temporal scales in
600 stream restorations and biotic monitoring to assess restoration outcomes: a literature review,
601 part 1. *River Research and Applications*, **36**, 1385–1397.

602 Griffith, M.B. & McManus, M.G. (2020b) Consideration of spatial and temporal scales in
603 stream restorations and biotic monitoring to assess restoration outcomes: a literature review,
604 part 2. *River Research and Applications*, **36**, 1398–1415.

605 Hall, R.O. Jr., Tank, J.L., Baker, M.A., Rosi-Marshall, E.J. & Hotchkiss, E.R. (2016)
606 Metabolism, gas exchange and carbon spiraling in rivers. *Ecosystems*, **19**, 73–86.

607 Harris, J.A., Hobbs, R.J., Higgs, E. & Aronson, J. (2006) Ecological restoration and global
608 climate change. *Restoration Ecology*, **14**, 170–176.

609 Hasselquist, E.M., Nilsson, C., et al. (2015) Time for recovery of riparian plants in restored
610 northern Swedish streams: a chronosequence study. *Ecological Applications*, **25**, 1373–
611 1389.

612 Hedin, L.O., von Fischer, J.C., Ostrom, N.E., Kennedy, B.P., Brown, M.G. & Robertson, G.P.
613 (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical
614 processes at soil–stream interfaces. *Ecology*, **79**, 684–703.

615 Hering, D., Borja, A., Carstensen, J., et al. (2010) The European Water Framework Directive
616 at the age of 10: a critical review of the achievements with recommendations for the future.
617 *Science of the Total Environment*, **408**, 4007–4019.

618 Hill, W.R., Ryon, M.G. & Schilling, E.M. (1995) Light limitation in a stream ecosystem:
619 responses by primary producers and consumers. *Ecology*, **76**, 1297–1309.

620 Hinshaw, S. & Wohl, E. (2023) Carbon sequestration potential of process-based river
621 restoration. *River Research and Applications*, **39**, 1812–1827.

622 Jax, K. (2005) Function and “functioning” in ecology: what does it mean? *Oikos*, **111**, 641–
623 648.

624 Kunz, J.V., Annable, W.K. & Lévesque, D. (2017) High-frequency nitrate monitoring reveals
625 effects of hydrology on nutrient dynamics in streams. *Journal of Hydrology*, **551**, 515–529.

626 Kupilas, B., Hering, D., Lorenz, A.W., Knuth, C. & Gücker, B. (2017) Hydromorphological
627 restoration stimulates river ecosystem metabolism. *Biogeosciences*, **14**, 1989–2002.

628 Leps, M., Sundermann, A., Tonkin, J.D., Lorenz, A.W. & Haase, P. (2016) Time is no healer:
629 increasing restoration age does not lead to improved benthic invertebrate communities in
630 restored river reaches. *Science of the Total Environment*, **557–558**, 722–732.

631 Lininger, K.B. & Lave, R. (2024) River restoration can increase carbon storage but is not yet a
632 suitable basis for carbon credits. *BioScience*, **74**, 717–724.

633 Lopez, J.S., Bernhardt, E.S. & Hall, R.O. Jr. (2025) Chamber-based measurements of stream
634 ecosystem metabolism across flow regimes. *Ecosystems*, **28**, 1–14.

635 Louhi, P., Vehanen, T., Huusko, A., Mäki-Petäys, A. & Muotka, T. (2016) Long-term
636 monitoring reveals the success of salmonid habitat restoration. *Canadian Journal of
637 Fisheries and Aquatic Sciences*, **73**, 1733–1741.

638 Mander, Ü., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Furlan Nogueira, S.,
639 Jamsranjav, B., Kasak, K., Truu, J., Tournebize, J. & Mitsch, W.J. (2014) Greenhouse gas
640 emission in constructed wetlands for wastewater treatment: a review. *Ecological
641 Engineering*, **66**, 19–35.

642 Martins, I., Macedo, D.R., Hughes, R.M. & Callisto, M. (2020) Are multiple multimetric
643 indices effective for assessing ecological condition in tropical basins? *Ecological Indicators*,
644 **110**, 105953.

645 McGinnis, D.F., et al. (2016) The influence of hydropower reservoir emissions on global
646 greenhouse gas budgets. *BioScience*, **66**, 950–963.

647 Morandi, B., Kail, J., Toedter, A., Wolter, C. & Piégay, H. (2017) Diverse approaches to
648 implement and monitor river restoration: a comparative perspective in France and Germany.
649 *Environmental Management*, **60**, 931–946.

650 Muotka, T., Paavola, R., Haapala, A., Novikmec, M. & Laasonen, P. (2002) Long-term
651 recovery of stream habitat structure and benthic invertebrate communities from in-stream
652 restoration. *Biological Conservation*, **105**, 243–253.

653 Nilsson, C., Polvi, L.E., Gardeström, J., Hasselquist, E.M., Lind, L. & Sarneel, J.M. (2015)
654 Riparian and in-stream restoration of boreal streams and rivers: success or failure?
655 *Ecohydrology*, **8**, 753–764.

656 Palmer, M.A., Menninger, H.L. & Bernhardt, E.S. (2010) River restoration, habitat
657 heterogeneity and biodiversity: a failure of theory or practice? *Freshwater Biology*, **55**, 205–
658 222.

659 Palmer, M.A. & Ruhi, A. (2019) Linkages between flow regime, biota and ecosystem
660 processes: implications for river restoration. *Science*, **365**, eaaw2087.

661 Pereda, O., Arroita, M. & Elosegi, A. (2020) Wastewater treatment plant effluents affect stream
662 metabolism and organic matter processing. *Science of the Total Environment*, **709**, 135161.

663 Pilotto, F., Nilsson, C., Polvi, L.E. & McKie, B.G. (2018) First signs of macroinvertebrate
664 recovery following enhanced restoration of boreal streams used for timber floating.
665 *Ecological Applications*, **28**, 587–597.

666 Poff, N.L. (1997) Landscape filters and species traits: towards mechanistic understanding and
667 prediction in stream ecology. *Journal of the North American Benthological Society*, **16**, 391–
668 409.

669 Polvi, L.E., Lind, L., et al. (2020) Facets and scales in river restoration: nestedness and
670 interdependence of hydrological, geomorphic, ecological and biogeochemical processes.
671 *Journal of Environmental Management*, **265**, 110288.

672 Ramião, J.P., Cássio, F. & Pascoal, C. (2020). Riparian land use and stream habitat regulate
673 water quality. *Limnologica*, **82**, 125762.

674 Raymond, P.A., Hartmann, J., Lauerwald, R., et al. (2013) Global carbon dioxide emissions
675 from inland waters. *Nature*, **503**, 355–359.

676 Rocher-Ros, G., Stanley, E.H., Loken, L.C., et al. (2023) Global methane emissions from rivers
677 and streams. *Nature*, **621**, 530–535.

678 Rosemond, A.D., Benstead, J.P., Bumpers, P.M., Gulis, V., Kominoski, J.S., Manning, D.W.P.
679 & Suberkropp, K. (2015) Experimental nutrient additions accelerate terrestrial carbon loss
680 from stream ecosystems. *Science*, **347**, 1142–1145.

681 Rossi, F., Mallet, C., et al. (2018) Interactive effects of pesticides and nutrients on stream
682 ecosystem functioning. *Ecotoxicology and Environmental Safety*, **148**, 624–632.

683 Schindler, D.E., Armstrong, J.B. & Reed, T.E. (2015) The portfolio concept in ecology and
684 evolution. *Frontiers in Ecology and the Environment*, **13**, 257–263.

685 Schuwirth, N., Kattwinkel, M. & Stamm, C. (2015) How stressor specific are trait-based
686 ecological indices for ecosystem management? *Science of the Total Environment*, **505**, 565–
687 572.

688 Silva-Junior, E.F., Moulton, T.P., Boëchat, I.G. & Gücker, B. (2014) Leaf decomposition and
689 ecosystem metabolism as functional indicators of stream integrity. *Ecological Indicators*,
690 **36**, 195–204.

691 Tiegs, S.D., Capps, K.A., et al. (2024) Human activities shape global patterns of decomposition
692 rates in rivers. *Science*, **384**, 1191–1195.

693 Ulseth, A.J., Hall, R.O. Jr., Boix Canadell, M., et al. (2017) Climate-driven changes in river
694 metabolism and carbon cycling. *Global Change Biology*, **23**, 349–361.

695 Valett, H.M., Thomas, S.A., Mulholland, P.J., Webster, J.R. & Dahm, C.N. (2021) Scaling
696 nutrient spiralling metrics to whole-stream nutrient retention. *Ecosystems*, **24**, 1201–1215.

697 Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E. (1980) The river
698 continuum concept. *Canadian Journal of Fisheries and Aquatic Sciences*, **37**, 130–137.

699 von Schiller, D., Acuña, V., Graeber, D., Martí, E., Ribot, M., Sabater, S. & Timoner, X. (2017)
700 River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to
701 environmental stressors. *Freshwater Biology*, **62**, 1632–1648.

702 von Schiller, D., Martí, E., Riera, J.L., Ribot, M., Argerich, A., Fonollà, P. & Sabater, F. (2015)
703 River nutrient dynamics in a changing world: mass-balance approaches to assess nutrient
704 retention. *Global Biogeochemical Cycles*, **29**, 665–676.

705 Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P.,
706 Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C. & Davies, P.M. (2010) Global
707 threats to human water security and river biodiversity. *Nature*, **467**, 555–561.

708 Vugteveen, P., Leuven, R.S.E.W., et al. (2006) Redefinition and elaboration of river ecosystem
709 health: perspective for river management. *Hydrobiologia*, **565**, 289–308.

710 Wang, C., Xu, Y., Li, S. & Li, X. (2023) Interconnected river–lake project decreased CO₂ and
711 CH₄ emissions from urban rivers. *Water*, **15**, 1986.

712 Woodward, G., Gessner, M.O., Giller, P.S., et al. (2012) Continental-scale effects of nutrient
713 pollution on stream ecosystem functioning. *Science*, **336**, 1438–1440.

714 Wright, K.K. (2021) Assessing stream restoration and the influence of scale, variable choice
715 and comparison sites. *Ecosphere*, **12**, e03440.

716 Xu, W., Wang, G., Liu, S., Wang, J., McDowell, W.H., Huang, K., Raymond, P.A. & Xia, X.
717 (2024) Globally elevated greenhouse gas emissions from polluted urban rivers. *Nature
718 Sustainability*, **7**, 938–948.

719

720 Young, R.G, Matthaei, C, & Townsend C. (2008) Organic matter breakdown and ecosystem
721 metabolism: functional indicators for assessing river ecosystem health. *Journal of the North*
722 American Benthological Society 2008 **27**, 605-625.

723

Unpublished manuscript

724 Table 1: Core set of selected functional indicators, which in total address the key elements of
 725 the aquatic ecosystems along these categories: (0) Important abiotic variables, which are not
 726 represented in routine management today (1) (primary) production-related measures, (2)
 727 decomposition-related proxy either with microbial dominance or dominance of macrofauna
 728 mediated (3) nutrient-removal related measure, and (4) measures for food web structure/
 729 complexity. In addition to these general descriptors of ecosystem health, we provide (5) one
 730 example of a specific functional measure of potential management interest, i.e., the greenhouse
 731 gas emission (see text for further details). This list is intended stimulate the discussion on the
 732 selection of a reduced set of appropriate indicators, which reasonably well describe ecosystem
 733 health in total and which fulfil other selection criteria (see text), including the practicability to
 734 measure the variables. It is explicitly not intended to cover a full set of all functional indicators,
 735 which are applied in aquatic science.

736
 737

(category) Variables	Example descriptors	Response time to stressors/ restoration	Operative scale
(0) Hydrodynamics	Near-bed hydraulics Turbulent flow Vertical, lateral exchange Transient storage	Fast	Spot to reach
(1) Metabolism, GGP	Gross primary production	Fast	Reach to segment
(2) Metabolism, ER	Ecosystem respiration	Fast to Intermediate	Reach to segment
(2) Litter decomposition	Mass loss in coarse and fine mesh bags (macrofauna/microfauna)	Intermediate	Spot
(3) Nutrient uptake	Total (U) Uptake efficiency (V_f)	Fast	Reach

(3) Secondary production	Microbial secondary production Macrofauna secondary production	Fast (micro) Intermediate (macro)	Spot
(4) Microbial functional diversity	Shannon diversity of OTUs Targets groups (e.g., cyanobacteria) Fungi:bacteria Denitrifiers	Fast to intermediate	Spot
(4) Consumer functional diversity	Functional feeding groups	Slow	Spot
(4) Food web complexity	Niche compression Carbon transfer efficiency	Slow	Spot
(5) Greenhouse gas emissions	CO ₂ emissions CH ₄ emissions N ₂ O emissions	Fast to intermediate	Spot

738