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Background information 

 

 
The present report is produced in the frames the Water Joint Programming Initiative  Water 
Challenges For A Changing World  2018 Joint Call  Closing the Water Cycle Gap, 
according to the terms of the contract No. …………………., between the Lead Partner 
(Lund University) and The WaterWorks2017 Follow-Up Secretariat 
 

The report, entitled “ Building on existing knowledge” was prepared by UT with the 
contribution of DDNI. 
 
This report provide the results obtained during the first year of implementation of the project 
and is focused on the current state-of-the art of NBS in urban areas. 
This WP explored existing successful implementations of the key nature-based 
technologies and challenges of their implementation. 
Stakeholder and end user’s attitude to adopt the NBS, as a way to identify catalysers, but 
also the main barriers such as costs, which were limiting the installation in urban areas 
have been also investigated.  
The WP assessed previous projects concerning social inclusion through NBS, and 
assessed existing guidelines for planning and design of the different cost-effective 
solutions, as well as the potential for their transferability and training. 
  



 
 

5 | P a g e  

 

 

1. INTRODUCTION 
 

 

Nature-based solutions (NBS) are actions, what are inspired by, supported by, or copied 

from nature. NBS are resource efficient and adapted in diverse spatial areas, facing social, 

environmental, and economic challenges (Somarakis, Stagakis, & Chrysoulakis, 2019). 

Nature based water management are considered sustainable solutions against shortage 

(droughts) and abundance (floods) of water in urban areas. Future climate models predict 

an increase of intensive rainfalls and also periods without precipitations all around the 

world. European Commission  a has accepted along-term strategic vision to move 

to climate neutrality by 2050 (European Commission, 2019). NBS in urban areas are the 

enhancement of sustainable urbanization, helping the development of climate change 

adaptation and mitigation (Somarakis, Stagakis,  & Chrysoulakis, 2019). 

 

NBS including such as wetlands, ponds, green roofs, detention structures and permeable 

pavements, has reducing impact on urban heat flux (Augusto et al., 2020). However, they 

have not achieved wide-spread uptake, due to the gaps in knowledge regarding designing, 

implementing, and maintaining NBS or quantifying the benefits and co-benefits of their 

ecosystem services (Somarakis, Stagakis,  & Chrysoulakis, 2019).  

 

The benefits of NBS varies in space and time, due to various aspects (impact on individual, 

family, group, and a larger population) and scales (building and plot, district, regional). The 

assessment of their benefits is strongly related to complex thinking (Somarakis, Stagakis,  

& Chrysoulakis, 2019).  

Most common barrier to implement NBS are the cost of system, availability of free space 

in urban area( depends on scale and capacity) and lack of confidence of decision makers 

and sucessful experience. Barriers are possible to cross by education (starting with kids in 

the scool, but also community and council level), increasing awarenes about climate 

change (discussion during project meeting in Oslo, 2019). 
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There are differents methods to assess the effectiveness and the quantification of NBS 

benefits using Life Cycle Assessment  and Costing,  evaluating comparable technical 

parameters(treatment efficiency, water retentions), public and private (incl. local business) 

feedback (discussion during project meeting in Oslo, 2019). 

 

Our literature overview focus on finding succesful nature base water maangements 

solution by evaluating their technical parameters and through this evaluation shaping the 

attitude and motivation to adopt new solutions. 

 

 

2. METHODOLOGICAL APPROACH 
 

Analysis of references sources in order to summarise the state-of-the-art and gaps in 

knowledge regarding case studies, nations and international scene. 

 

In this respect, a MetaData has been created with reference sources (Annex 1) and a 

Database (Annex 2) with information for data analysis of the  successful implementations 

of the key nature-based technologies. 

 

MetaData is link to the Goole Drive depository of NBS papers: 

https://drive.google.com/drive/folders/1s4ZymCcOuil7xJMEd0So6YGOxLkgQErB 

 

The overarching aim of the literature survey was to set focus for the most widely spread 

and implemented NBSs in the world. These measures include green roofs (GR), 

constructed wetlands (CW; also including detention and retention ponds), bioretention 

(BR), buffer strips (BS), rainwater harvesting (RWH), pearmable layer (PL) and swales (S). 

We  reviewd 179 papers published in international peer-reviewd journals indexed by the 

Thomson Reuter Web of Science. The terms “green roof(s)”, “constructed wetland(s)”, 

“detention pond(s)”, “retention pond(s)”, “bioretention”, “buffer strip(s)”, “rainwater 

harvesting”, “pearmable layer” and “swale(s)” in combination with the terms “urban”, 

“cities”, “water retention”, “phosphorus (removal)”, “nitrogen (removal)”, “total suspended 
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solids (removal)”, “BOD7(5)”, “storm” and “urban runoff” were searched. From the papers 

we collected the following data: annual temperature, annual precipitation, climate zone, 

climate (warm, wet; cold, wet; warm, dry; warm, wet), coordinates, depth of the NBS, area 

of the NBS, flow rate, removal efficiency of total phosphorus, total nitrogen and total 

suspended solids and water retention. 

 

In total of 173 green roof, 17 permeable layer, 21 rainwater harvesting, 15 swales, 38 

bioretention and 35 constructed wetland studies were analysed (Figure 1). The R program 

was used for the data analyses.  

 

 

Figure 1. NBS methods for water retention in urban environment 

  

3. RESULTS AND DISCUSSION  
 

From the collected data, we first analysed to see what data is missing and how it affects 

further analyses. We saw that while the information about water retention is available in 
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most of the studied green roofs and rainwater harvesting sites (Figure 3), it is almost 

completely absent in other solutions (Figure 2). Probabaly one of the reason is that while 

it is easy to analyse retention in green roofs and rainwater harvesting systems where there 

is controlled effluent. It is more challenging to analyse that in other solutions, therefore 

making it difficult to evaluate the overall potential of various NBSs in urban environment to 

retain water. In terms of pollutant data, we saw that BOD is absent in most of the solutions  

and therefore we excluded that in analyses, while TP, TN and TSS was available at least 

in half of the studied systems. The pollutant removal data in green roof and rainwater 

harvesting systems is difficult to evaluate, because they are usually designed to receive 

only precipitation that does not include excessive amount of pollutants, especially 

phosphorus compounds. Although, there have been some studies (e.g., Teemusk & 

Mander, 2007, 2011) where both nitrogen and phosphorus coumpounds are evaluated, 

their concentrations have been neglible.  

 

 

Figure 2. Missing data from PL, S, CW, BR and CW 
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Figure 3. Missing data from green roofs and rainwater harvesting sites. 

 

The water retention efficiency was highly variable in all solutions, however as seen in figure 

4, the reliable data is only available for green roofs. For other solution the amount of data 

is scarce and therefore it is difficult to say what is the actual efficiency. For green roofs, 

the average water retention efficiency was 58% with maxium value of 99%. The average 

water rention for other measures was slightly higher or in a same range but due to the low 

amount of data there is still a lot of ambiguity. The total nitrogen removal was also higly 

variable in all solutions but the highest average efficiency was with permeable layer, which 

was 62%. The average removal efficiency of constructed wetlands was 42%. All other 

measures on the other hand showed very high variabilty and some of the systems even 

increased the total nitrogen concentration at the outflow. The highest increase of TN was 

observable with bioretention and buffer strips, where maximum effluent concentration 

increased 270% and 94%, respectively. This can be due to the sudden and rapid runoff 

that potentially have washed out the contaminants from the system. Total phosphorus 

removal was relatively good in bioretention, constructed wetlands and in permeable layer, 

where the average efficiency was 65.5%, 53.5% and 71.3%, respectively. However, some 
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systems increased the concentration and for example, the average effluent concentration 

increased 66.7% and 51% in buffer strips and green roofs, respectively. The increase of 

pollutants in buffer strips, again probabaly is caused due to the sudden flood or changes 

in filter media. The increase in green roofs is probabaly related to fertilisers that are 

sometimes used to increase the plant growth rate in the roofs. And due to the rainfall, these 

phosphorus compounds are probably washed out from the system. TSS removal efficiency 

was also highly variable and based on the available data, the highest efficiency was with 

green roofs and with permeable layer, however this is based only on few data points 

(Figure 4).  
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Figure 4. Water retention (A), TN removal (B), TP removal (C) and TSS removal (D) with 

different NBS. Box and whisker plot represent median values with 25th and 75th 

percentiles and with min-max values. 

 

Since green roofs had the highest amount of available data about water retention, we used 

that information to analyse how different design parameters such as area and depth will 

affect water retention efficiency in different climate (Figures 5-6). As can be seen in figure 

5, the highest water retention efficiency was in warm and dry climate, while in warm and 

wet climate it was lowest. This shows that the green roof efficiency to retain precipitation 

in rainy conditions is lower. Mostly due to the water saturation. In dry condition, green roofs 

are able to retain more water and in dry ccondition usually the rainfall is much more rapid 

and therefore its efficiency is higher. In wet climate, the precipitation is often continuous 

with few massive storm but overall the efficiency is lower. This on the other hand does not 

mean that green roofs are not efficient in wet climate. Figure 6. shows that the thickness 

of green roof is highly important for water retention. And thicker the greef roof material is, 

the higher amount of water it is able to retain.  

 

Figure 5. Modelled green roof water retention efficiency based on area and climate zone.  
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Figure 6. Modelled green roof water retention efficiency based on depth and climate 

zone. 

 

A recent review by Sarabi et al., 2019 (“Key enablers of and barriers to the uptake and 

implementation of nature-based solutions in urban setting: a review“) has brought out the 

main objectives for developing NBS: 

• Climate change mitigation and adaption 

• Water management 

• Coastal resilience 

• Green space management 

• Air quality 

• Urban regeneration 

• Participatory planning and governance 

• Social justice and social cohesion 

• Public health and well-being 

• Economic opportunities and green jobs.  
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The same paper also noted the main barriers to develop and implement NBS in urban 

environment that are as follows: 

• Inadequate financial resources 

• Path dependency 

• Institutional fragmentation 

• Inadequate regulations 

• Uncertainty regarding implementation process and effectiveness of the solution 

• Limited land and time availabilty.  

Among these barries we found that another concern is the lack of available data to evaluate 

if some of the measures are efficient enough for water retention or for water treatment. For 

green roofs the amount of available data gives and great opportunity to evaluet the 

efficiency and therefore could serve as a good basis for future recommendation. From the 

barriers we can also see that one of the crucial issues is also the availabilty of land. For 

example, in dense urban environment it is difficult to built large systems and therefore 

these measures often end up in peri-urban areas where their efficiency is lower. The best 

methods in densely populated areas are solutions that can be built on top of roof or to the 

walls, e.g. green roofs, green walls and rainwater harvesting. These measures do not 

require any land from the streets and therefore are much easier to implement. In addition 

to potential water retention, they are also important to reduce the urban heat.  

 

As we saw, there are a lot of barriers for the successful implementation but Sarabi et al.. 

(2019) also brought out key enablers that are: 

• Partnership among stakeholders 

• Knowledge sharing mechanisms and technologies 

• Economic intruments 

• Plans, acts and legislations 

• Education and training 

• Effective monitoring and valuation systems for implementation process and benefit 

• Open innovation and experimentation 

• Combining NBS with other urban elements and gray infrastructures 
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• Appropriate planning and design.  

 

 

4. CONCLUSIONS AND RECOMMANDATIONS 
 
We found that, although NBS has recently studied a lot in terms of potential barriers and 

enablers, there is still lack of information about the efficiency of various measures. Various 

guidelines (e.g. urban planning) are suggesting different NBS to reduce flooding and 

pollution, however we can see that there still a lot of missing information. For example, 

some of the measures are well studies not only in urban environment but also elsewhere 

(e.g. constructed wetlands, buffer strips) and therefore have a lot if information about 

potential treatment efficiency. But on the other hand, as we saw from previous figure, the 

data about water retention capacity is missing in most cases. And if urban planning is done 

that also include various measures to mitigate flooding, there is a missing information 

about the real efficiency. Therefore, more case stdues has to be done to investigate the 

efficiency of different measures. Hence, if more precise information about the effieicny is 

available it is more efficienct to recommend measure to stakeholdsers and descicion 

makers and this could reduce some of the barriers for implementation. For example, green 

roofs are well studies in terms of their water retention capacity and therefore easy to 

recommend. On the other hand, we donät know much about the actual water retention 

capacity of permeable layer, constructed wetlands, swales etc.  
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ANNEX 1  

NBS Annual 

temperature  

Annual 

Precipitation 

(mm) 

Climate depth 

(cm)  

Area 

(m2) 

TN 

removal 

% 

TP 

removal% 

BOD 

removal 

(%) 

TSS 

removal 

% 

water 

retention 

% 

Reference 

BF 9.8 1120 cold, wet   74000   90.5       Hurley and Forman 2011 

BF 9.7 1127 cold, wet   74000   88.5       Hurley and Forman 2011 

BF 9.8 1120 cold, wet   81000   87       Hurley and Forman 2011 

BF 9.7 1127 cold, wet   81000   85.25       Hurley and Forman 2011 

BF 16.1 1049 warm, wet 0.27 1.4   29   47 0.7 Brasswell et al 2018 

BR 20.3 1578 warm, wet 200   -92.7 85.3   -30.4 39.15 Lucke & Nichols 2015 

BR 20.3 1578 warm, wet 200   -25.78 73.92   -42.85 61.6 Lucke & Nichols 2015 

BR 20.3 1578 warm, wet 200   26.2 60.23   -52.3 81.2 Lucke & Nichols 2015 

BR     warm, wet 55 0.025 63.3 81.9   90.1   Weng et al 2015 

BR 27.4 2336 warm, wet 80 16 -27.2 42.5 71.8 88.3 81.1 TAKAIJUDIN thesis 2016 

BR 27.4 2336 warm, wet 80 16 -270.5 -13.6 73.3 82.4 69.2 TAKAIJUDIN thesis 2016 

BR 15.1 1091 warm, wet 60   21 10   71 89.54 
Brown et al 2013; brown and 
hunt 2011 

BR 15.1 1091 warm, wet 90   19 44   82 89.54 
Brown et al 2013; brown and 
hunt 2011 

BR 27.4 1329 warm, wet 65 0.15 63.96 89.7   9318 12.49 Goh et al 2015 

BR 5.2 884 cold, wet 70 959       100   Blecken 2010 thesis 

BR 10     90 0.11 -73.3 80.73   969   Blecken et al 2007 

BR 10     90 0.11 -66.6 91.3   98   Blecken et al 2010 

BR 20 681 warm, dry 80 0.0707 93 93       Zhang et al 2011 

BR 12.7 1034 warm, wet 40 0.032   70.5   94   Hsieh et al 2007 

BR 12 1350 warm, wet 65 0.36 47.5 56.5 56.95 82.5   Kim et al 2018 

BR       56 0.0254   44.5       Erickson et al 2007 
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BR 12.6 1125 warm, wet 90 102         22.5 Davis et al 2012 

BR 9.3 1045 cold, wet 120 149         48.4 Davis et al 2012 

BR 15.3 1146 warm, wet 110 146         13.6 Davis et al 2012 

BR 13 1124 warm, wet 65 181 41     96   Li et al 2009; Li and Davis 2014 

BR 14.8 1163 warm, wet 55 162         73 Li et al 2009 

BR 14.8 1163 warm, wet 55 99         81 Li et al 2009 

BR 16.1 1150 warm, wet 105 0.125 50.1 69.7       Wu et al 2017 

BR 14.8 560 warm, dry 105 0.2 62.39       32.23 Jiang, et al. 2019 

BR       130 0.075 97.3         Cho et al 2009 

BR 14.8 653 warm, wet 81 0.1875 -28.4 84.4   98.1   Bratieres et al 2008 

BR 27.1 999.9 warm, wet 100 48 61.4 82.1   92.2   Muha et al 2016 

BR 27.1 999.9 warm, wet 100 48 64.7 83.3   92.4   Muha et al 2016 

BR 27.5 1329 warm, wet 60   33.5 66   78.5   TAKAIJUDIN et al 2017? 

BR 27.5 1329 warm, wet 70   36.9 69.4   84.4   TAKAIJUDIN et al 2017? 

BR 27.5 1329 warm, wet 80   40 69.5   93.4   TAKAIJUDIN et al 2017? 

BR 27 2000 warm, wet 80 0.15           Goh et al 2017 

BR 27.4 2304 warm, wet 50 0.025   84.7       Goh et al 2014 

BS     warm, dry     0 0   87   
Jiang et al. 2015, Barrett et al. 
1995 

CW 9.8 650 cold, wet   360     29 18   #VALUE! 

CW 11.1 822 cold, wet   1750     24 35   #VALUE! 

CW 27.1 2307 warm, wet 8.5 4000000 60 53 44 56   
Nur Asmaliza Mohd Noor et al. 
2017 

CW 21 237 warm, dry 80 3 38 66 90 90   Cerezo et al 2001 

CW 21 237 warm, dry 80 3 41 55 90 96   Cerezo et al 2001 

CW 21 237 warm, dry 80 3 23 48 88 96   Cerezo et al 2001 
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CW 21 237 warm, dry 80 3 78 60 90 95   Cerezo et al 2001 

CW 25.2 1032 warm, wet 85 41.8 59.4   65.1 77.75   #VALUE! 

CW 7.9 634 cold, dry 90 748 62.6 75.4 82 52   Dušek et al 2008 

CW 10.3 970 warm, wet 120 19500   74       Kohler et al 2004 

CW       27.5 66 43.5 53.5   85   Terzakis et al 2008 

CW       27.5 66 28.5 59.5   88.5   Terzakis et al 2008 

CW       47.5 64 50 60   90.5   Terzakis et al 2008 

CW       47.5 64 57.5 65.5   92   Terzakis et al 2008 

CW 18.9 1717 warm, wet 50 4 87.4 80.15       Headley et al 2001 

CW 17.6 1074.7 warm, wet 2 800 9 12   -4   Birch et al 2004 

CW 12.2 1113 warm, wet     7 14       Bangs 2007 

CW 18.7 910 warm, wet   9000 57 53.7       Adyel 2017 thesis 

CW 18.7 770 warm, wet   10000 45 65       Adyel 2017 thesis 

CW 7 700 cold, wet     35 43 40 68   Farrel & schenken 2003 

CW 7 700 cold, wet     13 46 15 60   Farrel & schenken 2003 

CW 17.8 567 warm, dry 85 27.25 37 40 50 65   Ventura et al 2019 

CW 11.8 1279 warm, wet 100 23 97 96   95 88 Choi et al 2015 

CW 11.8 1431 warm, wet 70 6.5 49 42   71 30 Choi et al 2015 

CW 22.9 1100 warm, wet   11400 69 43       Thomas et al 2016 

CW 22.9 1100 warm, wet   11400 -39 -9       Thomas et al 2016 

CW 22.9 1100 warm, wet   11400 71 75       Thomas et al 2016 

CW 22.9 1100 warm, wet   11400 -58 32       Thomas et al 2016 

CW 8.5 706 cold, wet 83 0.008 59.65   87.3     Lee and Schols 2007 

CW                     Vymazal, 2007 

CW 24 1440 warm, wet   27000 42,7 55       Nesbit and Mitsch 2018 
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CW 23.9 200 warm, dry 87.5 420000 28         Sanchez et al. 2016 

CW 17.6 340 warm, dry 50 1860000 64.3 39.3       Ibekwe et al. 2007 

CW 18.2 300 warm, dry 77 99000 52         Smith et al. 2000 

CW 21.6 300 warm, dry   124600 29         Kmiec & Thomure 2015 

CW 23.9 200 warm, dry     86         Palta et al. 2017 

CW 23.9 200 warm, dry     51         Palta et al. 2017 

CW 14.7 1010 warm, wet     25.5         Harrison et al. 2011 

DP 9.8 1120 cold, wet 106.5 112300   76.8       Hurley and Forman 2011 

DP 9.7 1127 cold, wet 106.5 121500   77.2       Hurley and Forman 2011 

FS 15 1089 warm, wet   80.1 32 40   72   Winston et al 2011 

FS 15 1089 warm, wet   42.6 16 33   65   Winston et al 2011 

FS 14.8 1163 warm, wet   86.5 51.1 46.7   88.9   Winston et al 2011 

FS 14.8 1163 warm, wet   38.9 49.2 45.6   73.1   Winston et al 2011 

FS 15.9 470 warm, dry   4.75       85   Barret 2004 

FS 16.9 355 warm, dry   9.2       96   Barret 2004 

FS 16.8 879 warm, wet   4.2       97   Barret 2004 

FS 14.4 899 warm, wet   8.3       96   Barret 2004 

FS 17.8 393 warm, dry   7.4       94   Barret 2004 

FS 17.2 366 warm, dry   8       97   Barret 2004 

FS 17.2 379 warm, dry   6.25       -450   Barret 2004 

FS   338 warm, dry   5.6       77   Barret 2004 

FS 19.9 1018 warm, wet   185 -35 -84   17   Li et al 2008 

FS 19.9 1018 warm, wet   218 -94 -153   46   Li et al 2008 

FS 19.9 1018 warm, wet   185 -41 -138   7   Li et al 2008 

FS 20.1 870 warm, wet   185 -91 -123   64   Li et al 2008 
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FS 20.1 870 warm, wet   185 -9 -122   66   Li et al 2008 

FS 20.1 870 warm, wet   185 -36 -212   71   Li et al 2008 

FS 8.3 762 cold, wet   1.68         59.8 Deletic and Fletcher 2006 

FS 7.1 814 cold, wet   4         58.9 García-Serrana et al 2017 

FS 7.1 814 cold, wet   4         60.1 García-Serrana et al 2017 

FS 7.1 814 cold, wet   7         58.6 García-Serrana et al 2017 

FS 7.1 814 cold, wet   4         88.2 García-Serrana et al 2017 

GR 16.1 1150 warm, wet             24.5 Li et al 2018  

GR 12.5 830 cold, wet 5 2000         26 Sailor ja Bass 2014 

GR 12.5 830 cold, wet 15 2000         39.5 Sailor ja Bass 2014 

GR 10.7 810 warm, wet 10 2000         59 Sailor ja Bass 2014 

GR 10.7 810 warm, wet 10 2000         90 Sailor ja Bass 2014 

GR 10.4 360 warm, dry 10 2000         99 vanWoert et al 2005 

GR 10.4 360 warm, dry 10 1000         50 Sailor ja Bass 2014 

GR 7 421 warm, dry 5 1         25.7 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 10 1         42.1 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 15 1         36.2 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 5 1         41.5 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 10 1         36.7 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 15 1         33.8 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 5 1         34.8 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 10 1         17.6 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 15 1         23.1 Liu et al 2019 (two articles) 

GR 7 421 warm, dry 5 1         40.6 Liu et al 2019 (two articles) 

GR 9 785 cold, wet 5.5 1.63         50.4 VanWoert et al 2005 
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GR 9 785 cold, wet 5.5 1.63         60.6 VanWoert et al 2005 

GR 9 785 cold, wet 5.5 5.95         70.25 VanWoert et al 2005 

GR 9 785 cold, wet 5.5 5.95         67 VanWoert et al 2005 

GR 22.6 2400 warm, wet 4 1.1         39.45 Wong&Jim 2014 

GR 22.6 2400 warm, wet 8 1.1         44.8 Wong&Jim 2014 

GR 25.6 1400 warm, dry   0.25         65.7 Vijayaraghavan, Raja 2015 

GR 15.1 1093 warm, wet 5 235         87.5 Voyde et al 2010 

GR 5 732 cold, wet 18 120         85.7 
Teemusk, Mander 2011; 
Teemusk, Mander 2007 

GR 5.3 732 cold, wet 14 100           Teemusk, Mander 2011 

GR 5.3 732 cold, wet 14 100           Teemusk, Mander 2011 

GR 5 732 cold, wet 11 1.5           Teemusk, Mander 2011 

GR 5 732 cold, wet 9 1.5           Teemusk, Mander 2011 

GR 5.2 732 cold, wet 18 35           Teemusk, Mander 2011 

GR 5.1 732 cold, wet 18 50           Teemusk, Mander 2011 

GR 5.1 732 cold, wet 20 50           Teemusk, Mander 2011 

GR 4.6 732 cold, wet 20 70           Teemusk, Mander 2011 

GR 5 732 cold, wet 20 30           Teemusk, Mander 2011 

GR 15.6 1182 warm, wet   1         72 Malcolm et al 2014 

GR 15.6 1182 warm, wet   415           Malcolm et al 2014 

GR 11.9 96 cold, wet 7.6 235         39 Hutchinson et al 2003 

GR 11.9 96 cold, wet 12 243         69 Hutchinson et al 2003 

GR 9 690 cold, wet 8 24.3         61 Uhl and Schiedt 2008 

GR 9 690 cold, wet 25 12         80 Uhl and Schiedt 2008 

GR 9 690 cold, wet 25 12         81 Uhl and Schiedt 2008 

GR 9 690 cold, wet 15 12         74 Uhl and Schiedt 2008 
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GR 9 690 cold, wet 5 12         67 Uhl and Schiedt 2008 

GR 9 690 cold, wet 5 12         73 Uhl and Schiedt 2008 

GR 9 690 cold, wet 10 12         69 Uhl and Schiedt 2008 

GR 9 690 cold, wet 10 24.1         62 Uhl and Schiedt 2008 

GR 9 690 cold, wet 10 25         69 Uhl and Schiedt 2008 

GR 9 690 cold, wet 15 25.1         69 Uhl and Schiedt 2008 

GR 9 690 cold, wet 10 12         71 Uhl and Schiedt 2008 

GR 9 690 cold, wet 15 12         77 Uhl and Schiedt 2008 

GR 9 690 cold, wet 15 12         77 Uhl and Schiedt 2008 

GR 9 690 cold, wet 10 12         69 Uhl and Schiedt 2008 

GR 9 690 cold, wet 4 12         64 Uhl and Schiedt 2008 

GR 9 690 cold, wet 8 17.6         69 Uhl and Schiedt 2008 

GR 9 690 cold, wet 8 24.2         64 Uhl and Schiedt 2008 

GR 9 690 cold, wet 8 12         67 Uhl and Schiedt 2008 

GR 8.1 785 cold, wet   5.95         80.2 Getter et al 2007 

GR 15.2 1200 warm, wet 6 217         66 Fassman-Beck et al 2013 

GR 15.2 1200 warm, wet 10 4         48 Fassman-Beck et al 2013 

GR 15.2 1200 warm, wet 15 4         57 Fassman-Beck et al 2013 

GR 15.2 1200 warm, wet 10 171         66 Fassman-Beck et al 2013 

GR 13 1059 warm, wet 10.2 3.696         54.2 Harper et al 2015 

GR 13 1059 warm, wet 10.2 3.696         45.3 Harper et al 2015 

GR 16.4 546 warm, dry 30 0.15         76.96 
Beecham and Razzaghmanesh 
2015 

GR 16.4 546 warm, dry 10 0.15         71.65 

Beecham and Razzaghmanesh 

2015 

GR 11 700 cold, wet 6 4       96 84.1 Seidl et al 2013 



 
 

7 | P a g e  

 

GR 11 700 cold, wet 16 4       98 83.7 Seidl et al 2013 

GR 10.5 828,8 cold, wet 17 408 -40.6 -20     65.7 Speak et al 2013, 2014 

GR 3.9 647 cold, wet   0.2   20     70 Kuoppamäki et al 2016 

GR 9.6 824 cold, wet 8 3         50.2 Stovin et al 2012 

GR 11.2 1107 cold, wet 13 3.6         42.55 Schroll et al 2011 

GR 19.9 1017,5 warm, wet 11 0.36         77.7 Volde and Dvorak 2014 

GR 18.1 465,6 warm, dry 8 2         54.98 Soulis et al 2017 

GR 18.1 465,6 warm, dry 16 2         66.25 Soulis et al 2017 

GR 9.3 968 cold, wet 13 0.26         34.6 Franzaring et al 2016 

GR 9.5 1154 cold, wet 13 830         66.21 Nawaz et al 2015 

GR 11.9 914 cold, wet 5 0.36         28 Buccola and Spolek (2011) 

GR 11.9 914 cold, wet 14 0.36         60 Buccola and Spolek (2011) 

GR 9.3 1307 warm, wet 10.2 248 32.1 -191     51.4 Gregoire and Clausen (2011) 

GR 16.2 1232 warm, wet 8 42.64         78 Carter and Rasmussen (2006) 

GR 8.3 785 cold, wet 14 241 15.1 -247.6     63 Seters et al. (2009) 

GR 10.1 925 cold, wet 7,5 1         39,8 Graceson et al 2013 

GR 10.1 925 cold, wet 15 1         47.7 Graceson et al 2013 

GR 14.7 1086 warm, wet 35 350         68 
Fioretti et al. (2010), Palla et al. 
(2011) 

GR 16.4 1600 warm, wet 40 2.16           Berndtsson et al 2009 

GR 8.1 600 cold, dry 3 5           Berndtsson et al 2009 

GR 19 1200 warm, wet 17 1         68 Zhang et al 2015 

GR 9.9 1283 warm, wet             35 Talebi et al 2019 

GR 3.4 428 cold, dry             53 Talebi et al 2019 

GR 2.4 384 cold, dry             61 Talebi et al 2019 

GR 7.4 946 cold, wet             38 Talebi et al 2019 
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GR 8.3 785 cold, wet             48 Talebi et al 2019 

GR 6.5 1410 cold, wet             27 Talebi et al 2019 

GR 9.4 1055 cold, wet   1190         95.9 Todorov et al 2018 

GR 13.5 900 warm, wet 6 4.9         85 Ferrans et al 2018 

GR 11.2 633 cold, wet 10 0.012         20 Dusza et al 2017 

GR 11.2 633 cold, wet 30 0.012         33 Dusza et al 2017 

GR 11 820 cold, wet 8 2.25         67.9 Yilmaz et al 2016 

GR 11 820 cold, wet 12 2.25         74.9 Yilmaz et al 2016 

GR 11 820 cold, wet 8 2.25         72.8 Yilmaz et al 2016 

GR 11 820 cold, wet 12 2.25         80.2 Yilmaz et al 2016 

GR 11 820 cold, wet 12 2.25         75.3 Yilmaz et al 2016 

GR 11 820 cold, wet 12 2.25         74.9 Yilmaz et al 2016 

GR 11.9 1373 warm, wet 15 1         24.1 Young Lee et al 2015 

GR 11.9 1373 warm, wet 20 1         51.8 Young Lee et al 2015 

GR 8.1 785 cold, wet 10.5 1.92         85.2 Whittinghill et al 2015 

GR       15 0.37 87 38     21.13 Beck et al 2011 

GR 8.4 551 cold, wet 35 2.88         64.75 Burszta-Adamiak 2012 

GR 22 2500 warm, wet 15 0.288         74.33 Fang 2010 

GR 12.4 541 warm, dry 10 0.35         48.8 Wang et al 2017 

GR 26.8 2378 warm, wet 25 4         11.4 Qin et al. 2012 

GR 26.6 2325 warm, wet 20 0.75         32 Musa et al 2008 

GR 3.4 428 cold, dry 15 52         83.6 Sims et al. 2016 

GR 7.4 846 cold, wet 15 65         76.5 Sims et al. 2016 

GR 6.5 1196 cold, wet 15 55         59.6 Sims et al. 2016 

GR 16 1287 warm, wet 10.2 27         63 Moran et al. 2003 
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GR 16 1233 warm, wet 7.5 70         62 Moran et al. 2003 

GR 12.1 1144 warm, wet 3 0,5         36 Carson et al. 2013 

GR 12.1 1144 warm, wet 10 12         54 Carson et al. 2013 

GR 9.4 1055 cold, wet 10 1190 59.55 93.75     96.8 Carpenter et al. 2016 

GR 12.1 1144 warm, wet 3 310         60 Hakimdavar et al. 2014 

GR 12.1 1144 warm, wet 3 99         64 Hakimdavar et al. 2014 

GR 12.1 1144 warm, wet 3 0.09         56 Hakimdavar et al. 2014 

GR 20.1 811 warm, wet 10 3.4         37.1 Simmons et al. 2008 

GR 16.2 1232 warm, wet 7.6 42.64         78 Carter and Rasmussen 2006 

GR 12 1219 warm, wet 16 12         81.9 Nardini et al. 2012 

GR 7.8 653 cold, dry 4 1.54         35 Villarreal and Bengtsson 2005 

GR 9.9 1117 warm, wet 35 1500         48 Johnston et al. 2004 

GR 9.9 1155 warm, wet 15 33         29 Connelly et al. 2006 

GR 9.9 1155 warm, wet 7.5 33         26 Connelly et al. 2006 

GR 11.9 940 cold, wet 12.5 290         14.5 Spolek 2008 

GR 11.9 940 cold, wet 15 500         25 Spolek 2008 

GR 8.3 785 cold, wet 14 241         63 Van Seters et al. 2009 

GR 9.3 995 cold, wet 9.5           52.6 
Berghage et al. 2009, Akther et 
al 2018 

GR 8.1 784 cold, wet 4           69 
Rowe et al. 2003, Akther et al 
2018 

GR 8.1 784 cold, wet 6           72 
Rowe et al. 2003, Akther et al 
2018 

GR 9.5 816 cold, wet 2           39 

Russell and Schickedantz, 2003, 

Akther et al 2018 

GR 9.5 816 cold, wet 10           58 
Russell and Schickedantz, 2003, 
Akther et al 2018 
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GR 8.2 870 cold, wet 4           48.35 
Monterusso et al. 2004, Akther 
et al 2018 

GR 8.2 870 cold, wet 10           84.46 
Carpenter and Kaluvakolanu 
2011, Akther et al 2018 

GR 12.5 1113 warm, wet 9           58.5 
DeNardo et al. 2005, Akther et 
al 2018 

GR 8.3 785 cold, wet 8.5           57 
Liu and Minor 2005, Akther et 
al 2018 

GR 8.3 785 cold, wet 14           65.3 TRCA (2006), Akther et al 2018 

GR 10.9 969 cold, wet 15           30.5 
Berkompas et al. 2008, Akther 
et al 2018 

GR 10.9 969 cold, wet 11.25           33 

Berkompas et al. 2008, Akther 

et al 2018 

GR 10.9 969 cold, wet 15           17.1 
Berkompas et al. 2008, Akther 
et al 2018 

GR 16.4 536 warm, dry 10 0.15         51 
Beecham and Razzaghmanesh 
2015, Akther et al 2018 

GR 16.4 536 warm, dry 30 0.15         96 
Beecham and Razzaghmanesh 
2015, Akther et al 2018 

GR 10.6 943 warm, wet 14           70 
Bliss et al 2009, Akther et al 
2018 

GR 10 918 warm, wet 12.5           50 
Morgan et al. 2012, Akther et al 
2018 

GR 10 918 warm, wet 7.6           74 

Berghage et al. 2010, Akther et 

al 2018 

GR 11.9 1001 cold, wet 12.5           56 Kurtz 2008, Akther et al 2018 

GR 11.9 1001 cold, wet 7.5           64 Kurtz 2008, Akther et al 2018 

GR 11.5 799 cold, wet 6           55 
Arias et al. 2016,Akther et al 
2018 

GR 13.5 866 warm, wet             76.7 

Perez et al 2016, Akther et al 

2018 
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GR 10.2 653 cold, wet 9             
Gromaire et al. 2013, Akther et 
al 2018 

GR 9.6 747 cold, wet             34 Stovin 2010 , Akther et al 2018 

GR 8.1 612 cold, dry 3 5         46 
Bengtsson et al. 2005, Akther et 
al 2018 

GR 12.9 1045 warm, wet 10 0.4         50 
Harper et al. 2015, Akther et al 
2018 

GR 16 1233 warm, wet 7.5           63 
Moran et al. 2005, Akther et al 
2018 

GR 15.3 1147 warm, wet 10           55 
Moran et al. 2005, Akther et al 
2018 

GR 16 1233 warm, wet 10           64 

Hathaway et al 2008, Akther et 

al 2018 

GR 13.9 1151 warm, wet               
Toladn et al 2012, Akther et al 
2018 

GR 22 2574 warm, wet 10 0.1           
Chen and Kang 2016, Akther et 
al 2018 

GR 26.6 2325 warm, wet 15           66.5 
Kasmin and Musa ,2012, 
Akther et al 2018 

GR 27.1 2486 warm, wet             51 
Kasmin et al. 2014, Akther et al 
2018 

GR 3.4 428 cold, dry 15           62.5 
Alberta Ingenuity 2008, Akther 
et al 2018 

GR 3.9 650 cold, wet 7 2         50.52 

Krebs et al 2016, Akther et al 

2018 

GR 12.1 610 warm, dry 15 120         78.27 
Yang et al 2015, Akther et al 
2018 

GR 12.4 541 warm, dry 22.5 0.5 9.9         
Wang et al 2013, Akther et al 
2018 

GR 10.3 360 warm, dry 10 1858         80 
Jiang et al. 2015, Tolderlund 
2010 

GR 10.3 360 warm, dry   2000         68.7 
Jiang et al. 2015, Tolderlund 
2010 
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PL 22 1500 warm, wet 90   80         Chang2019 

PL 22 1500 warm, wet 45   70         Chang2019 

PL 11.7 1016 warm, dry   18           Brattebo, Booth 2003  

PL 11.7 1016 warm, dry   18           Brattebo, Booth 2003 

PL 11.7 1016 warm, dry   18           Brattebo, Booth 2003 

PL 11.7 1016 warm, dry   18           Brattebo, Booth 2003 

PL 14.8 1259 warm, wet   50 91 98     29.65 Brasswell et al 2018 

PL 17.1 1417 warm, wet 8 740           Bean et al 2007 

PL 16 925 warm, wet 15 108         99.86 collins et al 2007, 2010 

PL 16 925 warm, wet 8 108         99.33 collins et al 2007, 2010 

PL 16 925 warm, wet 8 108         98.17 collins et al 2007, 2010 

PL 16 925 warm, wet 8 108         99.51 collins et al 2007, 2010 

PL 16.1 1049 warm, wet 40 215 27 41   91 56.3 Brasswell et al 2018 

PL 23.2 695 warm, wet 46 37         87 Alam et al 2019 

PL 23 630 warm, wet 57 209         88 Alam et al 2019 

PL 23.2 695 warm, wet 38 372         80 Alam et al 2019 

PL + 
BF 16.1 1049 warm, wet 40 216 42 75   96 56.6 Brasswell et al 2018 

RG 10.1 1204 warm, wet 60 9.2 32 -110.6     98.8 Dietz ja Clausen 2005 

RG 8 774 cold, wet 0.7 405           Elliott et al 2011 

RG 6.9 838 cold, wet 0.6 405           Elliott et al 2011 

RG 7 985 cold, wet 2 4047           Elliott et al 2011 

RG 14.6 1076 warm, wet 122   33 -39       Hunt&Lord2006 

RG 14.6 1076 warm, wet 122   43 9       Hunt&Lord2006 

RG 14.7 1203 warm, wet 122   40 65       Hunt&Lord2006 

RG 14.8 1071 warm, wet 75   64 66       Hunt&Lord2006 
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RG 14.8 1071 warm, wet 75   68 22       Hunt&Lord2006 

RG 15.4 1057 warm, wet 122   65 68       Hunt&Lord2006 

RG 10 417 warm, dry     6 −473   −21 53 Jiang et al. 2015 

RWH 20.8 856 warm, wet   2.8           Mendez et al 2011 

RWH 20.8 856 warm, wet   2.8           Mendez et al 2011 

RWH 20.8 856 warm, wet   2.8           Mendez et al 2011 

RWH 20.8 856 warm, wet   3.4           Mendez et al 2011 

RWH 20.8 856 warm, wet   3.4           Mendez et al 2011 

RWH 14.2 551 warm, dry   180           Gikas & Tsihrintzis 2012 

RWH 14.1 541 warm, dry   100           Gikas & Tsihrintzis 2012 

RWH 14.1 541 warm, dry   180           Gikas & Tsihrintzis 2012 

RWH 15.3 541 warm, dry   75           Gikas & Tsihrintzis 2012 

RWH 14 542 warm, dry   130           Gikas & Tsihrintzis 2012 

S 1.4 494 cold, dry 0.456         99   Bäckström 2003 

S 1.4 494 cold, dry 0.456         99   Bäckström 2003 

S 1.4 494 cold, dry 0.456         96   Bäckström 2003 

S 1.4 494 cold, dry           70 54 Bäckström 2003 

S 1.4 494 cold, dry 5.8 7.5       97.5 33 Bäckström 2002 

S 1.4 494 cold, dry 3.7 7.5       99 66 Bäckström 2002 

S 1.4 494 cold, dry 4.8 7.5       88.5 33 Bäckström 2002 

S 12.8 1105 warm, wet   121 -5.7 -27.5   44.1   Stagge et al 2012 

S 12.8 1105 warm, wet   84.2 -25.6 -49.2   45.6   Stagge et al 2012 

S 12.8 1105 warm, wet     77.2 14.7   82.7   Stagge et al 2012 

S 12.8 1105 warm, wet     85.6 68.7   68.8   Stagge et al 2012 

S 20.3 1168 warm, wet 7.44 130 54.4 46   69   Deletic and Fletcher 2006 
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S 11.4 1219 warm, wet 130 9.3 39       40 Shetty et al 2019 

S 17.6 322 warm, dry     67 1   76   Jiang et al. 2015, Caltrans 2004 

SP 10.1 699 cold, dry 150 330000           Ivanovski et al 2018 
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Table 1. Min, max and average values (std) of key Nature Based Solutions (BR – bioretention, CW – constructed wetlands, BS – 

buffer strips, GR – green roof, PL – pearmeable layer, RWH – rainwater harvesting, S – swales) with depth (m), area (m2), flow rate 

(L s-1), nutrient and organic matter removal (%) and water retention (%). N.A. – not available. 

NBS param depth (cm) Area (m2) 
Flow rate 

(L s-1) 

TN removal 

(%) 

TP removal 

(%) 

BOD removal 

(%) 

TSS removal 

(%) 

Water 

retention (%) 

BR min 0.3 0.27 0.9 -270.5 -13.6 57.0 -52.3 0.7 

BR max 200.0 81000.0 1.0 97.3 93.0 73.3 98.1 89.5 

BR avgstd 87.6 10397.6 1.00 9.978.4 65.528.6 67.49.0 65.549.3 53.030.8 
CW min 2.0 1.68 3.0 -58.0 -9.0 15.0 -4.0 30.0 

CW max 120.0 4000000.0 3.0 97.0 96.0 90.0 96.0 88.0 

CW avgstd 69.2 207652.5 3.0 42.932.3 53.522.4 61.128.5 69.828.5 59.041.0 
BS min N.A. 1.7 N.A. -94.0 -212.0 N.A. -450.0 58.6 

BS max N.A. 218.0 N.A. 51.1 46.7 N.A. 97.0 88.2 

BS avgstd N.A. 63.780.6 N.A. -15.852.9 -66.798.3 N.A. 42.3125.6 65.112.9 
GR min 2.0 2 N.A. -40.6 -247.6 N.A. 96.0 11.4 

GR max 40.0 2000.0 N.A. 87.0 93.8 N.A. 98.0 99.0 

GR avgstd 11.96.7 186.0478.6 N.A. 27.244.0 -51.1136.5 N.A. 97.01.4 57.819.3 
PL min 8.0 18.0 N.A. 27.0 41.0 N.A. 91.0 29.7 

PL max 90.0 740.0 N.A. 91.0 98.0 N.A. 96.0 99.9 

PL avgstd 33.6 156.2190.6 N.A. 62.026.7 71.328.7 N.A. 93.53.5 79.424.1 
RWH min 0.6 2.8 N.A. 6.0 -110.6 N.A. N.A. 53.0 

RWH max 122.0 4047.0 N.A. 68.0 68.0 N.A. N.A. 98.8 

RWH avgstd 70.152.9 396.21060 N.A. 43.921.2 11.566.6 N.A. N.A. 75.932.4 
S min 0.5 7.5 0.5 -25.6 -49.2 N.A. 44.1 33.0 

S max 130.0 130.0 8.4 85.6 68.7 N.A. 99.0 66.0 

S avgstd 19.144.9 52.457.2 1.73.0 41.742.4 9.044.2 N.A. 79.619.5 45.214.4 
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