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Abstract: In the modern world, when the problems of the environment are most acutely associated
with climate change, amphibians are considered to be the most vulnerable group of anamniotes as an
indicator of the state of wetlands. Along with a decrease of numbers among amphibians in Europe,
nowadays newts especially suffer from the impact of invasive species, in particular predators such
as the Chinese sleeper, Perccottus glenii. This predatory fish species has recently spread to areas of
primary relevance for newt reproduction. This fish consumes eggs, larvae, and even adult newt
individuals. Using an ecological niche approach and climate based species distribution models
(SDM), we applied the coefficient of determination (R2) for comparing the level of similarity of the
built SDM for the newts Triturus cristatus and Lissotriton vulgaris, and the Chinese sleeper. We show
that by 2050, the level of climatic niche similarity for these native and invasive species will increase
from 12% to 22% throughout Europe, and from 44% to 66% in Eastern Europe. This study highlights
the expansion of the Chinese sleeper as a real threat to European biodiversity of wetlands in the near
future, especially in their most northeastern distribution range.

Keywords: climate change; GIS-analysis; modelling; alien species; amphibians; wetlands; Europe

1. Introduction

Amphibians have recently been reported to have dramatically decreased in numbers
throughout Europe, especially in Eastern countries [1–3]. Wetlands as habitats, important
for amphibians at certain stages of their life, are shrinking and degrading due to climate
change [4,5], anthropogenic effects, pollution, and impacts of alien invasive species [6].
Occurrence of invasive or so-called alien species in the ecosystem is one of the results of
its unfavorable state. Such species appear in the ecosystems disturbed, transformed or
affected in other ways by human, along with decrease of biodiversity of native species.
Alien invasive species often appear and adapt in new places far from their natural range,
for example, as a result of uncontrolled release into the wild from captivity or other
anthropogenic activities [6–9]. Among these species, such predators as redbreast sunfish
Lepomis auritus (Linnaeus, 1758), pumpkinseed Lepomis gibbosus (Linnaeus, 1758), and
Chinese sleeper Perccottus glenii (Dybowski, 1877) recently introduced in Europe along
with northern pike Esox lucius (Linnaeus, 1758) and pikeperch Sander lucioperca (Linnaeus,
1758) that for a long time have been spreading in terms of developing aquaculture, pose
the greatest threat to newts at all stages of their ontogenesis [10,11]. Mass appearance of
the Chinese sleeper P. glenii in water bodies of European cities may result from deliberate
releases by amateur aquarists and fishermen in the early 20th century. Until recently P. glenii
has been considered ornamental. Yet due to its eurybiontic nature, aggressiveness, flexible
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and wide range of suitable food items (both invertebrates and small vertebrates on different
stages of ontogenesis) and ecological plasticity, this species has spread extensively both
in Northern and Southern Europe with the most western records known from Germany,
Czech Republic, Poland, Hungary, and Serbia [11–18]. Since 2016, the Chinese sleeper
P. glenii is included in the special list of Invasive Alien Species of Union concern in Europe
(the Union list) [4].

According to the literature, P. glenii is a serious threat for local biota [15–27]. It was
reported that its diet consists of macro- and micro crustaceans (Ostracoda, Copepoda, Clado-
cera, Isopoda, Amphipoda, Gastropoda), highly mobile invertebrates such as Coleoptera
and Heteroptera [16], eggs and larvae of other fish and amphibians, including both anu-
rans and urodeles [15,17–21]. Additionally, this species also affects the food base for local
inhabitants acting as a trophic competitor for human resources. Habitats heavily invaded
by P. glenii are usually associated with lower fish species richness and diversity [22,23].
Moreover, P. glenii can be a vector for several species of parasites, which can lead to sig-
nificant damage to local ecosystems and aquaculture [24–27]. In addition, by feeding
on macro- and micro-invertebrates, P. glenii noticeably reduces the transport of nitrogen
from aquatic to terrestrial environments [27]. What is more, it was shown that P. glenii
along with eggs of other fish species (e.g., roach Rutilus rutilus (Linnaeus, 1758), bream
Abramis brama (Linnaeus, 1758), and perch Perca fluviatilis (Linnaeus, 1758) [27] consumes
spawn (including that laid by newts) when it was mobile, either under the effect of flow or
at the stage of the movable embryo [27].

Of all amphibian species, newts are, due to their comparably low dispersal capability,
especially vulnerable to climate change, anthropogenic influence and, as a result, from the
emergence of new invasive predator species [28]. The two most widely distributed species
of newts, yet preserved in the European Union, are the crested newt Triturus cristatus
(Laurenti, 1768) and the smooth newt Lissotriton vulgaris (Linnaeus, 1758) [29,30]. Recently,
it has been suggested that the expansion of P. glenii to new areas may have contributed to
population decreases in these two newt species [31].

All the studied species are strictly bounded to different types of wetlands as sources
for living space, water, spawning, and foraging areas. Such territories as wetlands are
extremely important for conservation of biodiversity providing refugia for amphibians,
reptiles, mammals, insects, rare plants, and other groups of living organisms that are
strictly connected to the specific wetland habitats. At the same time, they provide valu-
able services to humans, protecting the land from flood, erosion, and soil degradation,
being a source of water, accumulating carbon ad providing other ecological services [32].
Nowadays wetlands suffer from many threats both due to human activities, for example
uncontrolled mining, irrigation, pollution on a local level and climate changes glob-
ally [33,34]. Therefore, restoration of wetlands becomes more and more popular and
effective way to prevent their degradation and save their unique biological complexes. If
organized properly, such restoration projects are quite efficient. There are more and more
reports stating that local fauna and flora of restored wetlands do not differ much from
those of the natural ones [33–36]. Taking into account the possible interactions of native
species and the potential emergency of the invasive ones is important in such projects
and the topic discussed in this work is dedicated just to this matter on the example of
two native newt species and invasive predatory fish.

In this study, we aimed at modelling the present and near future distributions of
T. cristatus and L. vulgaris in relation to that of P. glenii in Europe. In order to obtain a more
complete forecast about the vulnerability of these native newts throughout their entire
European range, we expanded the scope of our research to identify the most potentially
suitable habitats for these species, as well as to make a forecast about the prospects in the
face of the expansion of P. glenii as an aggressive predator of native newts in Europe.
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2. Materials and Methods
2.1. Occurrence Data Collection

Occurrence data on the studied species referred to the entire territory of Europe in
order to increase the accuracy of the built models, despite the fact that the main focus of
our investigation was to evaluate the potential future overlap of the considered species in
Eastern Europe. The occurrence data for T. cristatus, L. vulgaris, and P. glenii was collected
from the literature resources [12–24,37–40] and online Global Biodiversity Information
Facility databases [41–43]. Data were supplemented by original datasets [11,28,31,37,40]
and collection materials (I. I. Schmalhausen Institute of Zoology, National Academy of Sci-
ences of Ukraine, Kyiv; Department of Ecology, Institute of Life Sciences and Technologies,
Daugavpils University, Daugavpils, Latvia; all non-duplicate data), thus covering the most
eastern range where P. glenii was first reported. To account for potential sampling bias, we
used the nearest neighbor distance (‘ntbox’ package in R [44]) method to thin the data: to
avoid spatial autocorrelation, occurrence points ≤ 0.1 units (meaning approximately the
spatial resolution of the climate factors’ database (.tiff map file, 2,5′ spatial resolution) used
for the research) away from each other were removed. As a result, the numbers of points
used for modelling were 2096 for L. vulgaris, 2277 for T. cristatus, and 944 for P. glenii.

Meanwhile, monitoring studies were carried out in the south of Latvia (near the
town of Silene in 2018 and 2022) and in areas of north-western Ukraine (Volyn, Rivne,
Zhytomyr, and Kyiv regions in 2017–2021). In order to find the evidence of co-habitation
of the newts and fish, they were captured by a hoop-net alongside the water edge in
spring months (April–May).

2.2. Environmental Data

We used 35 bioclimatic variables from the CliMond dataset ([45–47], Table S1), fol-
lowing A1B climate change prediction scenario of MIROC H global climate model. Out of
35 bioclimatic variables, highly correlated (>0.7) predictors were removed using the ‘virtual-
species’ package in R, resulting in a selection of 16 variables: annual mean temperature (◦C)
(Bio01), mean diurnal temperature range (mean (period max-min)) (◦C) (Bio02), isother-
mality (Bio02/Bio07) (Bio03), temperature seasonality (Bio04), min temperature of coldest
week (◦C) (Bio06), temperature annual range (Bio05-Bio06) (◦C) (Bio07), mean temperature
of wettest quarter (◦C) (Bio08), mean temperature of warmest quarter (◦C) (Bio10), mean
temperature of coldest quarter (◦C) (Bio11), annual precipitation (mm) (Bio12), precipita-
tion of driest week (mm) (Bio14), precipitation seasonality (Bio15), precipitation of driest
quarter (mm) (Bio17), radiation of driest quarter (W m-2) (Bio25), lowest weekly moisture
index (Bio30), and mean moisture index of warmest quarter (Bio34). Models were run with
climate data for 1970–2000 and for 2041–2060 (hereafter referred as 1975 and 2050 periods).
These intervals were provided by CliMond for modelling the current distribution (most
of the records of the studied species dated from 1975 to around 2000) and for building
probabilistic models for 2050 [9].

We also used 19 long-term climatic variables from the Near-global environmental
information for freshwater ecosystems (river ecosystems, long-term hydroclimatic variables
following the “bioclim” framework, EarthEnv NGEI, HydroSHEDS, https://www.earthenv.
org/streams (6 February 2022), [48], Table S1). The dataset consists of near-global, spatially
continuous, and freshwater-specific environmental variables in a standardized 1 km grid.
This new set of variables provides a basis for spatial ecological and biodiversity analyses in
freshwater ecosystems at near global extent.

2.3. Model Building

Ecological niche modeling and species distribution modelling (SDM) methods were
used to determine the potential home range of invasive species in new environments (Max-
ent with 25 replicates, DivaGis (Bioclim) [49,50]). We used two evaluation metrics for SDMs
performance, namely binomial tests and the area under the receiver operating characteristic
(ROC) curve (AUC) for assessing the discriminatory capacity of the models. ROC is a

https://www.earthenv.org/streams
https://www.earthenv.org/streams
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visual graphical representation of comparison of the amount of true positive versus false
positive pixels through an incremental binary classification of the factors used in building
distribution maps [44,51,52]. AUC > 0.85 is considered excellent [53,54]. We carried out
separate modelling for each set of factors and for each species. Logistic output format
was used to describe the relative probability of presence, which is a continuous habitat
suitability (HS, %) range between 0 (unsuitable) and 1 (the most suitable). Prospective
habitat suitability (HS > 0.5) was used to express the amount of potentially suitable areas
for each species according to the built SDMs. Binomial tests were used to highlight SDM
areas where the target species has actually been registered. We used the coefficient of
determination to assess similarity (p < 0.05) between the predicted HS maps (pairwise)
obtained through Maxent for each species across the study area [8]. GIS-modelling was
accomplished using SAGA GIS, DivaGis, and QGis [49]. Linear regression analysis of
SDM grid of P. glenii as dependent and multiple grids (SDM T. cristatus and/or L. vulgaris)
as independent (predictor) variables was carried out using the program SAGA GIS. De-
tails of the regression/correlation analysis are provided in the supplement. Optionally
the regression model is used to create a new grid (SDM P. glenii and T. cristatus and/or
L. vulgaris) with regression-based values [55]. Statistical processing of the obtained data
was carried out using Statistica for Windows v.10.

3. Results

The Maxent distribution models for the three considered species using 16 CliMond
variables showed that their average AUCs after 10 repetitions were 0.85, 0.85, and 0.93,
respectively (Figure 1).

As a first result of our study, it was found that before 2000, prospective habitat suitability
(HS > 0.5) areas in Europe made up 30.3% for T. cristatus (binomial test—25.4%), 28% for
L. vulgaris (binomial test—25.4%), and 12.3% for P. glenii—12.3% (binomial test –11.6%) ([44],
Figure S1). The modeling results allowed to conclude that these species occupy similar habitats
and the range partially overlaps (Figures S2–S4). However, our models indicate that by 2050,
the invasive P. glenii will double its range compared to the considered newts, leading to a
significant spatial overlap of the species’ distributions in the near future. Native newt species
of Eastern Europe (including the Baltic countries; Figure S1) will especially suffer from the
influence of P. glenii due to such overlap of future distributions amongst species.

Secondly, the climatically suitable range for the Chinese sleeper is predicted to in-
crease significantly by 2050. In addition, the coefficient of determination as a measure for
comparing the distribution models of P. glenii with those for T. cristatus and L. vulgaris at
once, will significantly increase (p < 0.05) from 12% to 22% throughout Europe, and more
importantly from 44% to 66% in Eastern Europe.

Finally, our results show that a combination of factors (namely, annual mean tem-
perature, mean temperature of wettest quarter, precipitation of warmest quarter, mean
moisture index of warmest quarter), associated with average temperature amplitudes for
different periods, and humidity has the greatest influence on the spatial distribution of
all considered species (both the fish and the newts). In addition, the factor radiation of
coldest quarter complements this combination of factors since it affects humidity within
habitats [31]. Importantly, P. glenii appeared to be the most tolerant and resistant species to
the temperature regime with annual mean temperature having its optimal values between
+2 and +12 ◦C (Figure 2). Since P. glenii prefers shallow reservoirs that can dry up in the
summer-autumn period, the Bio08 Mean temperature of wettest quarter is an especially
important factor for the species.
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perature, mean temperature of wettest quarter, precipitation of warmest quarter, mean 
moisture index of warmest quarter), associated with average temperature amplitudes for 
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Figure 1. Potential (probabilistic) model: 1—T. cristatus (AUC = 0.85; Bio01 Annual mean temper-
ature: Percent contribution—41.3%, Permutation importance—30.1%); 2—L. vulgaris (AUC = 0.85;
Bio01 Annual mean temperature: Percent contribution—30.7%, Permutation importance—12.2%);
3—P. glenii (AUC = 0.93; Bio08 Mean temperature of wettest quarter: Percent contribution—42.8%,
Permutation importance—5.9%); world expansion built in the Maxent program based on the CliMond
(a—1975; b—2050) climatic data, GBIF data (2022) and original data. Areas of the highest habitat
suitability (>0.5) are colored in red and areas of the lowest (<0.1)—in blue.
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Figure 2. Map of the Maxent model: (A)—Map of the cohabitation of 3 species (SDM) in Europe;
and the plots of response curves of the Maxent model using only the Bio01 variable—Annual mean
temperature (◦C, CliMond) from: (B)—L. vulgaris; (C)—T. cristatus; (D)—P. glenii.

4. Discussion

Our models show that the greatest similarity of species distribution models and
habitat suitability is found for both newt species. This is well illustrated by the high value
of the coefficient of determination of 67.8% used to compare the models for L. vulgaris and
T. cristatus. Such modeled overlap in distribution is consistent with the fact that these two
newt species do coexist in their native biotopes. Yet, biotopic specialization and shifts
in phenology have been reported in these amphibians since the end of the 20th century
as a result of climate change [56–58]. For instance, suitable water bodies for amphibian
reproduction have recently been reported to become less abundant and smaller, with
reproduction starting earlier in the year. Consequently, for species of amphibians that
reproduce in the same water body, but at different times of the year, the number of cases
of simultaneous breeding increases with more frequent overlapping of breeding seasons
of different species. Yet, not all species of amphibians, being forced to share the same
spawning sites by various environmental changes, can effectively and successfully breed in
such conditions [56–58].

Newts are found mainly in small water bodies, streams and ditches, where they spawn
in spring and in the first half of summer and then winter on land [27,28,31]. Yet, since the
expansion of the invasive predatory fish P. glenii throughout Europe, field observations
report negative impacts on native newt species. For example, in the Volyn, Rivne, Zhytomyr,
and Kyiv regions of Ukraine monitored in 2017–2021 newts were found only in water bodies
where P. glenii was not recorded (Figure 3, personal observations).
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Figure 3. Field observations of spawning of native newts T. cristatus (lower right corner) and
L. vulgaris (lower left corner) in the same temporary seasonal pond without any presence of P. glenii,
29.04.2021, Rivne region, Ukraine; upper part of the picture illustrates the typical spawning water
body, shared by both species of newts.

During the net capturing, very few cases of syntopic occurrence of the fish and the
newt(s) were recorded. The water body types did not differ from each other, so their type
did not affect the presence or absence of the animals. For example, among 31 water bodies
in the Shatsk district of the Volyn region examined in May 2021 (3 lakes, 18 channels,
8 seasonal shallow ponds, 2 small rivers on the territory of approximately 5000 ha) 11 water
bodies were invaded by P. glenii, 2 were inhabited together by L. vulgaris and T. cristatus,
10 were inhabited by one of the newt species in addition to other amphibian species,
8 water bodies did not have any of the considered species expected to be caught by a net.

However, several cases of presence of P. glenii and T. cristatus and/or L. vulgaris were
recorded during the spawning period and the development of larvae, with the number
of newts being reduced to several individuals only: (1) Rivne oblast’, Sarny district,
Starosil’ske forestry, an old amber-mining service channel (51.693331 N 27.089842 E);
(2) Volyn oblast’, Kivertsi district, and old swampy lake near the village of Berestiane
(50.963063 N 25.914284 E); and (3) Zhytomyr oblast’, Malyn district, an oxbow lake of
Irsha river (50.761216 N 29.251534 E). In addition, field observations in Latvia reported
that newt larvae found in the water bodies invaded by P. glenii showed more physical
damages than in waters where P. glenii was absent [40]. Moreover, similar observations
were made for another European newt species closely related to T. cristatus, the Danube
crested newt (Triturus dobrogicus), where newts had not been recorded anymore in
previously occupied spawning water bodies after P. glenii invasion [59].

Considering such dangerous invasive predatory fish species as P. glenii, L. gibosus,
and others is extremely important during implementation of projects aimed on restora-
tion of wetlands. Such projects usually include complicated counting of all factors, that
play significant role for well-being of local amphibians. There are numerous examples
when properly designed restored wetlands showed almost now significant differences
in terms of impacts on amphibian communities. For example, during experimental
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designing of mitigation wetlands to replace wetland habitat that was lost during road
construction authors have estimated occupancy of 4 amphibian species in 8 created miti-
gation wetlands, 7 impacted wetlands, and 7 reference wetlands in the Greater Yellow-
stone Ecosystem in Wyoming, USA [33]. As a result, occupancy did not differ between
impacted and reference wetlands for any of the registered 4 amphibian species: western
toads (Anaxyrus boreas Baird & Girard, 1852), Columbia spotted frogs (Rana luteiventris
Thompson, 1913), western tiger salamanders (Ambystoma mavortium Baird, 1850), and
boreal chorus frogs (Pseudacris maculata Agassiz, 1850) [33]. Another study highlighted
the results of comparison of habitat suitability for smooth newt (L. vulgaris), that is the
only native newt species in Ireland [36]. The study showed that even such factor as
presence/absence of natural barriers (logs, stones, gulches, roads etc.) may affect the
suitability of the habitat for the newt, which resulted in lower HS for L. vulgaris among
constructed wetlands (2 of 8 suitable) comparing to higher HS (7 of 8 suitable) for natural
wetlands [36]. However, it should be noted that presence of invasive species in this
particular study was not used as a factor to be included in HS counting, as there are
no knowns cases of P. glenii or other aggressive fish predator registered in the country.
Based on our research we strongly recommend to add actual records of invasive fish
presence/absence, number of registered individuals, density of populations, and other
aspects to be included in the assessing of habitat suitability for native amphibian species
when planning any mitigation measures towards saving of the biodiversity of wetlands.

In Latvia, when the authors created isolated wetlands within the frame of national con-
servation strategies (2018, 2022), the crested newt was also recorded only in geographically
isolated wetlands (GIWs) located far from a large lake and where P. glenii and other fish
species were not found—doctor fish Tinca tinca (Linnaeus, 1758), E. lucius and weatherfish
Misgurnus fossilis (Linnaeus, 1758). In the course of this wetland creation in 2022, out of
14 ponds (7 of them are GIWs, and 7 are connected with larger water bodies), during
monitoring (hoop-net mowing method), fish (T. tinca, E. lucius, M. fossilis and P. glenii)
were found only in 6 non-isolated water bodies. T. cristatus (1 larvae per 10 mowings)
was found in 1 GIW and in 4 GIWs L. vulgaris was registered (up to 5 larvae per 10 mow-
ings). At the same time, in 2018, newts were found in almost all non-isolated ponds where
P. glenii individuals were not found. The number of registered T. cristatus larvae was higher
(up to 3 individuals per 10 mowings). Moreover, in isolated ponds, where no fish were
found in 2022, 10 mowings captured up to 8 larvae of T. cristatus and up to 26 larvae of
L. vulgaris. Thus, we conclude that only in GIWs the number of newts remain optimal,
while in non-isolated wetlands for 4 years (until 2022) a negative trend in the number of
recorded newts has been confirmed.

The reduction of the number and sometimes the disappearance of newt micro-populations
in the south of their natural range have led to the fact that they were included in the Red Book
in some countries. For example, T. cristatus is now included in the Red Book of Ukraine and
L. vulgaris is now a candidate to be listed in the nearest future [28,31,60].

Consistently, our models of newt distribution in Eastern Europe show that the con-
tinental biogeographical zone has the highest priority in terms of potentially suitable
territories for these native species. In the western part of this area, newts can move south
into the steppe zone along the eco-corridors associated with large rivers, such as the Danube
and the Dniester (Figures S2 and S3). The invasive predatory fish P. glenii has a similar, yet
more fragmented, range (Figure S4). Our study shows that the distribution range of newts
will be considerably reduced by 2050, whereas the range of their potential predator, the Chi-
nese sleeper will on the contrary double its extend. This is consistent with field observation
since 2010 when we have been reporting rapid spread of P. glenii in the continental zones of
Ukraine and in eastern Latvia, that is also confirmed by our monitoring studies in recent
years. In most cases, temporary water bodies of wetlands stay uninvaded, becoming key
spawning areas for the native newts (Figure 3). Thus, alien fish-free wetlands, which many
geographically isolated wetlands are often harbor more species of amphibian than typical
pond or lake ecosystems. The main reason for this is that amphibians’ larvae need less
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time to grow to the ontogenetic stages able to leave the water and lead a terrestrial lifestyle.
Meanwhile P. glenii requires more time to breed and cannot escape the water. Therefore, it
is impossible for the invasive fish to create a stable population in small temporary water
bodies that usually dry out by the end of summer, giving enough time for the newts to
complete metamorphosis and shift to terrestrial lifestyle.

According to our GIS modelling data, the range of newts and their abundance will be
greatly reduced by 2050 compared to the area they used to occupy before 2000, especially
in the south. T. cristatus will be especially affected.

Our results of the GIS-analysis are supported in recent years by numerous field
investigations when wetlands, heavily invaded by P. glenii showed either no signs of
L. vulgaris or T. cristatus, or only several individuals were found either during the peak of
the breeding season or the development of larval stages [16–18,59].

5. Conclusions

Two most widely distributed species of newts (L. vulgaris and T. cristatus) protected in
the European Union will decrease in abundance and range, whereas the expansion of the
invasive predatory fish Chinese sleeper (P. glenii) will intensify within the next decades. The
expansion of this invasive predator, due to considerable overlap of suitable combination of
bioclimatic factors, is an additional threat to native species of wetlands [61,62]. Therefore,
it is necessary to establish management plans for the protection of native herpetofauna
species taking adequately into account the heavy influence of invasive species and bringing
their further expansion under strict control.

Suggested good practices for controlling P. glenii and protecting native newts include
educational works with the general public and key stakeholders; control of stocking
fry; banning any types of publications of alien invasive species at online marketplaces;
increasing legal liability; running reintroduction programs for newts; regularly removing
P. glenii from the ponds using fyke-nets; and GIS-modelling of the invasion and incor-
poration of associated results into conservation plans for newts. Of great importance
in the protection of amphibians are geographically isolated wetlands (shallow and dry
at the end of metamorphosis of newts) as habitats free from alien fish. Therefore, the
creation of isolated water bodies should be included in active plans for the management
and protection of amphibians.

Our research can serve for further plans for the restoration of the areas of wetlands
that are suitable for the newts, as well as for help for their reintroduction. This study will
help in future to implement practical plans for the conservation of amphibians in a global
all-European scale, especially as an example of wetlands biodiversity conservation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15020201/s1, Figure S1: Result of the analysis of Binomial
tests (5 bioclimatic CliMond covariates): 1—T. cristatus; 2—L. vulgaris; 3—P. glenii; a—2000,
b—2050; Figure S2: GIS modeling results—Potential (probabilistic) model built with the considera-
tion of river systems: A—T. cristatus; B—L. vulgaris; C—P. glenii; D—regression model (SAGA GIS)
is used to create a new grid (SDM P. glenii and T. cristatus and/or L. vulgaris) world expansion
built in the Maxent program based on the 19 environmental variables (EarthEnv NGEI, SAGA GIS,
Table S1) and the most important factors. Areas of the highest habitat suitability (>0.5) are colored
in red and areas of the lowest (<0.1)—in blue; Figure S3: The result of pairwise comparison of SDM
grids (Potential (probabilistic) model, coefficient of determination (R2), SAGA GIS)—dependence
graphs of 3 species: A—T. cristatus/P. glenii; B—L. vulgaris/P. glenii; C—T. cristatus/L. vulgaris; world
expansion built in the Maxent program based on the 19 environmental variables (EarthEnv NGEI,
Table S1); areas of the highest habitat suitability (>0.5) are colored in red and areas of the lowest
(<0.1)—in blue; Figure S4: Maps of the joint habitation of the newts with P. glenii (red bold line
shows the areas of cohabitation of the fish with the newts): A—with T. cristatus; B—with L. vulgaris;
Table S1: Bioclimatic variables (35) from the CliMond dataset and 19 environmental variables
(Long-term hydroclimatic variables) from the Near-global environmental information (EarthEnv
NGEI) for freshwater ecosystems in 1 km resolution.
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Investigation, O.N., M.P., O.M. and A.Č.; Methodology, O.N. and V.T.; Project administration, A.S.,
O.N., A.Č. and M.P.; Resources, O.N., M.P. and AČ; Software, O.N. and V.T.; Supervision, O.N., V.T.
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