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1 Summary  

 
The research focuses on the development of an integrated multi-criteria decision analysis 
framework to evaluate nature-based solutions (NBS) scenarios in urban areas, specifically 
addressing conflicting social preferences, environmental risks, and ecosystem services (ES) 
provisioning. The report summarizes the integration of results from WP2 and WP3, focusing 
on the evaluation of risk assessment, creation of NBS scenarios, and assessment of their 
capacity to reduce risks, as well as the provisioning of ES. 
The framework was then tested and refined within the core NICHES case-study cities: 
Barcelona, Boston, and Rotterdam, providing essential insights for developing transition 
pathways (T4.3) and ensuring the effective application of NBS in urban water management 
systems. 
 

2 List of abbreviations 

 

EU European Union 

NBS Nature-based solutions 

ES Ecosystem services 

SETS Social-Ecological-Technological Systems 

CC Climate Change 

   

3 Introduction 

Urban areas, where the majority of the global population resides, face increasing challenges 
due to climate change (CC) and rapid urbanization (UN-Habitat, 2022). Climate-related 
hazards threaten citizens' health and wellbeing while compromising urban infrastructure 
(IPCC, 2022). Traditionally, urban systems have relied on grey infrastructure, designed to 
address a single function per system (Kremer et al., 2016; Dhakal & Chevalier, 2017; Raymond 
et al., 2017), but these solutions often fail to account for uncertainties, such as those 
introduced by climate change. To address these challenges, Nature-Based Solutions (NBS) 
have emerged as a promising approach to enhance urban resilience (McPhearson et al., 
2015). NBS offer a range of benefits, including enhancing biodiversity, improving resilience, 
and addressing environmental and social challenges (UN, 2022). Compare to the concept of 
green infrastructure, NBS are often praised for their multifunctionality, as they extend beyond 
a narrow set of benefits, particularly those related to stormwater and flood management 
(Venkataramanan et al., 2019, Meerow 2019). One core concept of NBS, the provision of co-
benefits remains underexplored (Hanson et al., 2020). Understanding the more complex 
picture of needs, opportunities, and synergies of these co-benefits is essential for effective 
urban planning (Haase et al., 2014; Kremer et al., 2016; Penning et al., 2023). 
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This study presents an integrated multi-criteria decision analysis framework, emphasizing 
spatially explicit analyses of urban needs, opportunities, and constraints for integrating NBS 
in sustainable stormwater management at the city scale. The framework was developed and 
tested in the core NICHES case study cities: Barcelona, Boston, and Rotterdam.  

4 Conceptual framework 

Overcoming the persistent sectoral divides that dominate spatial infrastructure planning is 
critical, particularly for integrating diverse knowledge systems. Although numerous scholars 
have highlighted the importance of breaking these barriers in theory (Paul et al., 2017; 
Muñoz-Erickson et al., 2017), the translation of such ideas into practical methodologies 
remains a significant challenge (Ramsey et al., 2019). Addressing these limitations requires an 
interdisciplinary approach that bridges gaps across disciplines and sectors. 
 
The Social-Ecological-Technological Systems (SETS) framework (Fig.1), proposed by 
McPhearson et al. (2016), serves as an effective tool for achieving such integration. SETS are 
framed as an interconnected system of social, ecological, and technological domains (Chester 
et al., 2023), where interactions between and within these domains are considered 
“couplings.” Recognizing these interdependencies is key to fostering sustainable urban 
transformations that maximize synergies, minimize trade-offs, and account for cascading 
impacts (Helmrich et al., 2023). For example, the capacity of use of NBS as a tool for urban 
adaptation is heavily moderated by social, ecological and technological factors (McPhearson 
et al., 2022).   
 

 
Figure 1. Conceptual framework (adapted from McPhearson et al. 2021) 
 
Building on the SETS framework, the integrated assessment approach for NBS in urban 
planning connects policy analysis with transitioning pathways by enabling a holistic evaluation 
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of social, ecological, and technological interactions. Beyond the technical planning and 
evaluation of NBS, it is essential to understand the role of existing policy structures in their 
successful implementation, identifying current patterns and potential opportunities. 
Integrated assessment plays a central role in the NICHES project by bridging the gap between 
policy analysis and the practical implementation of NBS (Fig. 2). Building on policy analysis 
findings, integrated assessment offers a systematic framework for evaluating the social, 
ecological, and technological implications of NBS scenarios. This approach is vital for co-
defining transition pathways, which involve large-scale changes in system properties, 
infrastructures, and overall system structure, with the potential to use external forces like 
policies to achieve the desired goals of urban adaptation strategies. By incorporating spatially 
explicit analyses of urban needs, opportunities, and constraints for integrating NBS in 
sustainable stormwater management at the city scale, integrated assessment ensures that 
transition pathways are not only feasible but also socially and environmentally sustainable.

 
Figure 2. Task framing withing NICHES project workflow  
 

5 Methodological framework 

The methodological framework (Fig.1) developed for this study employs a GIS-based 
approach, drawing on the work of Langemeyer (2016) and Langemeyer and Baró (2021). It 
follows a four-step analysis to assess the potential of nature-based solutions (NBS) in urban 
areas. 
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Figure 3. Example of methodological framework applied to the Barcelona Municipality 
 
The first step utilizes the SETS-framed (McPhearson et al., 2016; Chang et al., 2021) risk 
assessment developed in T3.1 “Community vulnerability assessment” to identify urban areas 
most vulnerable to stormwater-related hazards with the identify area with higher potential 
for NBS integration for mitigating existing risk. 
 
The second step focuses on T2.3, NBS scenario development, assessing the feasibility of 
integrating NBS into the urban landscape. This evaluation is based on a system of SETS 
indicators, which are used to categorize areas from fully feasible to non-feasible for NBS 
implementation. 
 
In the third step, based on T2.4, the performance of NBS is evaluated by analyzing runoff 
reduction and assessing how NBS integration can reduce the risks identified in the first step. 
 
The final step involves evaluating the additional co-benefits provided by NBS, such as 
improvements in thermal comfort, recreation, water storage, habitat provisioning, and water 
quality.  
 
This delivery specifically demonstrates the application of the framework using the case study 
of Barcelona. 
 

5.1 Case study of Barcelona 
Barcelona, the capital of Catalonia, Spain spans approximately 101 km² and is home to around 
1.6 million residents (2021), making it one of Europe's most densely populated cities (Baró et 
al., 2014). The city experiences a Mediterranean climate with annual rainfall of about 600 
mm, often concentrated in intense storms that contribute to flooding and combined sewer 
overflows (Llasat et al., 2022; Cortès et al., 2018). Projections indicate a 15% increase in 
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extreme rainfall events by mid-century, with century-scale storm intensities rising by 20–40% 
(SUDS Commission, 2020). 
 
To address these climate challenges, the Barcelona Nature Plan 2030 aims to provide 1m² of 
green space per resident, adding 160 hectares of new green areas, alongside an expansion of 
green roof coverage to 22,000 m² (Municipal Urban Ecology Agency). This study’s spatial 
framework supports these efforts by guiding NBS implementation, assessing their scalability 
in a dense urban environment, and evaluating their role in mitigating stormwater-related 
hazards while delivering additional co-benefits. 
 

5.2 Changes in hydrological risks 
 
This step advances a previously developed methodology and theoretical framework for 
assessing stormwater-related hazards and their impacts on urban communities (D3.1). It is 
intended to complement T2.1 by mapping vulnerabilities of urban communities to 
stormwater related hazards like pluvial flood and combined sewer overflow within socio-
ecological-technological systems. All detailed explanations of methodology, indicators 
selection and justification could be found in deliverable 3.1 and Khromova et. al 
(forthcoming).  
 

5.3 Feasibility assessment and scenarios development 
This step refines a previously developed methodology for NBS allocation (D2.3), selecting five 
NBS types relevant to stormwater management. Green roofs, rain gardens, porous pavement, 
and urban parks were assessed based on social, ecological, and technological indicators. 
Feasibility maps were generated using spatial data and geometric mean aggregation, 
categorizing areas by suitability. All detailed explanations of methodology, indicators 
selection and justification could be found in deliverable 2.3 and Khromova et. al 
(forthcoming).  
 
Two NBS implementation scenarios were developed: Scenario 1 (S1) aligns with Barcelona’s 
Nature Plan 2030, adding 160 hectares of green space, while Scenario 2 (S2) prioritizes high-
feasibility areas from previous step.  
 

5.4 Rainfall-Runoff Modeling 
For performance assessment, we used InVEST® Urban Flood Risk Mitigation (version 3.14.2) 
to model runoff in the watershed, applying the SCS-CN method (USDA, 1972; Muche et al., 
2019). Runoff retention at the catchment outlet was calculated using rainfall, land use data, 
and soil hydrologic groups (Natural Capital Project, 2023).  
 

5.5 Impact on Risk 
NBS were evaluated for their potential risk reduction, focusing on vulnerable census tracts. 
Using the methodology developed in deliverable 3.1, also showcased in Khromova et al. 
(forthcoming) and Langemeyer et al. (forthcoming), we calculated risk scores for different 
scenarios (S0, S1, S2), comparing the percentage changes in risk with ArcGIS. 



D4.1 Integrated assessment framework 

 

 9 

 

5.6 Co-benefits of NBS 
 

5.6.1 Water Storage 
NBS promotes groundwater recharge, supporting drought contingencies (Russo et al., 2020). 
InVEST's Urban Stormwater Retention module was used to model aquifer recharge from NBS, 
with input data on LULC, soil groups, and precipitation. 
 

Indicator Type 
Spatial 
Scale / 
Value 

Year Source/ Reference 

Map of 
average 
annual 

precipitation 

geotif   Average annual precipitation (mm) 1991-2020 Servei 
Meteorològic de Catalunya 

LULC 
categories 

geotif 0.75m 2019 LULC estimation based on NDVI  

Biophysical 
Table of 

runoff and 
percolation 
coefficients 

csv  2024 
Estimation based on Muche et al, 2019 (CN), NRCS-USDA 

2004, InVEST user guide 

Soil 
hydrologic 

groups 
geotif 250m 2018 

Global Hydrologic Soil Groups (HYSOGs250m) for Curve 
Number-Based Runoff Modeling 

Table 1. Indicators used as an input for urban stormwater retention module 
 

5.6.2 Water Quality 
NBS were assessed for nutrient retention (nitrogen and phosphorus), using InVEST's NDR 
module (Björklund et al., 2018). The model calculates nutrient export and retention based on 
land use, slope, and flow paths (InVEST, 2023). 

Indicator Type 
Spatial 
Scale / 
Value 

Year Source/ Reference 

Digital 
Elevation 

Model 
geotif 0.5m 2017 Institut Cartogràfic i Geològic de Catalunya 

LULC 
categories 

geotif 1m 2018 Institut Cartogràfic i Geològic de Catalunya 

Nutrient 
runoff 
proxy 

geotif  2024 
Average annual precipitation (mm) 1991-2020 Servei 

Meteorològic de Catalunya 

Table with 
biophysica

l 
properties 

csv   U.S. Environmental Protection Agency (EPA) estimations 

Threshold 
flow 

accumulati
on 

numb
er 

  1000 (InVEST user guide) 

Borselli K 
parameter 

numb
er 

  2 (InVEST user guide) 

Table 2. Indicators used as an input for nutrient delivery ratio (NDR) module  
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5.6.3 Habitat Quality 
Biodiversity services were assessed through InVEST’s Habitat Quality module, which evaluates 
habitat sensitivity and threats (Zhang & Ramírez, 2019). This model uses land cover data and 
threat proximity to estimate habitat degradation. 

Indicator Type 
Spatial 
Scale / 
Value 

Year Source/ Reference 

Current LC 
categories 

geotif 1m 2018 Institut Cartogràfic i Geològic de Catalunya 

Future LC 
categories 

geotif 1m 2024 Elaboration based on developed S1 and S2 

Threats table csv   Adapted from Wu et al. 2021, 
INVEST user guide 

Sensitivity 
table 

csv   Estimations based on InVEST user guide 

Half-
saturation 
constant 

number 0.05  default value from InVEST user guide 

Table 3. Indicators used as an input for habitat quality and rarity module  
 

5.6.4 Nature Access 
Given Barcelona’s limited green space (Baró et al., 2014), InVEST’s Urban Nature Access 
module assessed both supply and demand for recreational areas, critical for residents' well-
being (Triguero-Mas et al., 2015). The model uses population density, LULC data, and nature 
demand per capita. 
 

Indicator Type 
Spatial 
Scale / 
Value 

Year Source/ Reference 

LULC 
categories 

geotif 1m 2018 Institut Cartogràfic i Geològic de Catalunya 

Table with 
LULC codes 

csv   Radiuses suggested in Ta et al, 2022 and Claron et al, 
2022 

Population 
density 

csv 
Census 

tract 
2021 

INE Población por sexo, Sección y edad (grupos 
quinquenales). (ine.es) 

Per capita 
demand for 

urban nature 
(m²) 

number 9m2  Target recommended by the WHO 

Administrative 
Boundaries 

shp   Barcelona city boundaries 

Search radius 
Mode 

parameter   300 m (walking distance) 

Decay 
Function 

parameter Exponential  

A distance-weighted exponential decay function, where 
people are more likely to visit the nature closest to them, 

with likelihood falling off exponentially out to the 
maximum radius. 

Table 4. Indicators used as an input for urban nature access module  
 
All detailed information, input data and references for all modules are available in Khromova 
et. al (forthcoming). 
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6 Results and discussion 

Following the feasibility assessment (D 2.3), two NBS scenarios were developed (Fig. 4): 

• Scenario 1 (S1): This scenario integrates city planning targets, aligning with the 

Barcelona Nature Plan 2030 goal of providing 1m² of green space per resident by 2030. 

This translates to the creation of 160 hectares of new green areas. 

• Scenario 2 (S2): This scenario prioritizes areas with the highest feasibility, selecting all 

NBS from the first of five feasibility groups. This approach results in a total 

implementation area of 2498 hectares. 

While scenarios for assessing the effectiveness of NBS often focus on ecological and 
technological feasibility, we put forward the argument that explicitly including social factors 
promoting or limiting certain developments can lead to more in-depth results. In doing so, we 
aim to do justice to Anguelovski and Cobera’s (2023) call for rigorous assessment of the 
capacity of NBS to deliver benefits. 
 
 

 
Figure 4. Combined maps of NBS distribution for S1 and S2. 
 

6.1 NBS performance assessment 
 
The performance assessment of runoff retention volume and flood volume for the current 
LULC (S0), S1, and S2, as well as the flood volume for storms with return periods of T1, T10, 
T50, T100, and T500, is presented in Table 2. 
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Table 5. Performance assessment results. 
 
The runoff retention volume and flood volume for scenarios S1 and S2 were compared to the 
current LULC (S0) by calculating the percentage of reduction (Table 3). A gradual decrease in 
the percentage reduction of flood volume relative to S0 was observed across return periods 
from T1 to T500 for both S1 and S2, ranging from 2.3% to 1.4% and 11.2% to 7.8%, 
respectively. Conversely, an increase in the percentage of retention volume compared to S0 
was noted for both S1 and S2, ranging from -2.2% to -6.3% and -10.8% to -35.7%, respectively. 

 
Table 6. Performance assessment results. 
 
The InVEST Urban Flood Risk Mitigation model results show a maximum flood volume 
reduction of 11.2% between scenarios S0, S1, and S2 during storm events (T1, T10, T50, T100, 
T500) (Table 3). While this reduction seems modest, it reflects the strain on the existing 
drainage system, which frequently faces CSO events. NBS interventions could improve runoff 

S0 runoff
retention
volume

(m3)

S0 flood
volume

(m3)

S1 runoff
retention
volume

(m3)

S1 flood
volume

(m3)

S2 runoff
retention
volume

(m3)

S2 flood
volume

(m3)

T1 1,149,670 1,106,404 1,175,182 1,080,893 1,274,123 981,953.0

T10 2,197,887 6,321,698 2,304,950 6,214,632 2,754,661 5,764,901

T50 2,369,829 8,228,737 2,498,360 8,100,221 3,065,056 7,533,502

T100 2,450,785 9,334,311 2,590,415 9,194,686 3,220,414 8,564,666

T500 2,607,305 11,986,45 2,770,343 11,823,41 3,539,015 11,054,75

 -

 2,000,000.00

 4,000,000.00

 6,000,000.00

 8,000,000.00

 10,000,000.00

 12,000,000.00

 14,000,000.00
V

o
lu

m
e 

(m
3)

T1 T10 T50 T100 T500

%S1 retention volume to S0 -2.2 -4.9 -5.4 -5.7 -6.3

% S1 flood volume to S0 2.3 1.7 1.6 1.5 1.4

% S2 retention volume to S0 -10.8 -25.3 -29.3 -31.4 -35.7

% S2 flood volumes to S0 11.2 8.8 8.4 8.2 7.8

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

%
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retention by 1.4% to 11.2%, reducing runoff volumes by up to 931,707 m³. Combined with 
existing flood mitigation infrastructure (e.g., underground reservoirs and sewer pipes), these 
interventions could help reduce CSO events and mitigate flooding during low-intensity 
storms. 
While runoff reduction is a useful metric, it doesn’t fully capture the spatial distribution of 
water in the drainage system, limiting its assessment of stormwater risk. However, NBS still 
show a positive impact on water retention and flood volume (Table 2, Table 3), potentially 
improving stormwater management in vulnerable areas. While these results can’t predict 
future conditions with certainty, they offer valuable insights for informed urban water 
management decisions. 

 

6.1.1 Impact on risk 

Regarding the impact on risk scores, a significant reduction of up to 55% relative to S0 is 
observed for both S1 and S2, particularly in areas influenced by NBS interventions such as rain 
gardens and large urban parks (Fig. 5). It is important to note that this reduction reflects the 
effect of NBS on runoff generation for specific land parcels, rather than capturing the more 
complex dynamics of runoff distribution within the collector and sewer systems.  
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Figure 5. Changes across scenarios S1 and S2 compared to S0 in spatial distribution of risk of 
stormwater related hazard. 

6.2 Co-benefits provided by NBS  

6.2.1 Water Storage 

 Regarding water storage, measured as the total percolation volume, representing the 
potential aquifer recharge within the study area (Barcelona city) over a given time period (one 
year), an increase was observed for both S1 and S2. Specifically, the total percolation volume 
increased by up to 8.8% for S1 and 58.4% for S2 compared to the baseline scenario (S0). 

 S0 S1 S2 % S1 to S0 % S2 to S0 

Total percolation 
volume 
(m3/year)  

3,206,250 3,490,291 5,079,064 -8.8 -58.4 

Table 7. Water storage modelling outputs. 
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6.2.2 Habitat Provisioning 

Regarding the habitat provisioning modeling outputs for ecosystem quality per administrative 
unit, an increase is observed for both S1 and S2, with improvements of 3.6% and 36.2%, 
respectively.  

S0 S1 S2 % S1 to S0 % S2 to S0 

Mean value for 
quality of 
ecosystems 

0.0029 0.0030 0.0042 -3.6 -36.2 

Table 8. Habitat provisioning modelling outputs. 

6.2.3 Water quality  

Regarding the water quality modelling outputs for nitrogen (N) and phosphorus (P) surface 
export and surface load per watershed, a reduction is observed across all indicators. The 
reduction ranges from 1.9% to 2.5% when comparing S0 and S1, and from 6.9% to 10.6% 
when comparing S0 and S2 for all indicators.  

S0 S1 S2 % S1 to S0 % S2 to S0 

N surface load 
(kg/ year) 

113947 111,698.7 105,599.4 1.9 7.3 

N surface export 
(kg/ year) 

31,497.26 30,689.4 28,154.8 2.5 10.6 

P surface load 
(kg/ year) 

15,692.03 15,411.28 14,609.06 1.7 6.9 

P surface export 
(kg/ year) 

4,036.063 3,937.71 3,628.548 2.4 10.1 

Table 9. Water quality modelling outputs. 

6.2.4 Nature Access:  

Regarding the urban nature access modelling outputs for the total population within the 
administrative unit that is undersupplied (defined as areas where the demand for accessible 
green space exceeds the available supply) with urban nature, a significant reduction is 
observed. The reduction is 13.7% when comparing S0 and S1, and 49.9% when comparing S0 
and S2. 
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 S0 S1 S2 % S1 to S0 % S2 to S0 

Population 
undersupplied 
with urban 
nature  

262.6 226.5 131.4 13.7 49.9 

Table 10. Nature Access modelling outputs. 

7 Conclusion 

NBS are key for enhancing urban resilience by addressing socio-ecological and socio-technical 
challenges, but gaps remain in understanding their broader co-benefits and integration into 
urban planning. This study presents a five-step SETS-based framework for assessing NBS 
implementation in Barcelona, focusing on stormwater management and green development 
strategies. 
Using Barcelona as a case study, the research shows that NBS can reduce stormwater-related 
risks by up to 55% in some areas. While runoff reduction is modest (1-10%), NBS demonstrate 
significant co-benefits, including a 49% improvement in recreational opportunities, a 58% 
increase in water storage, a 10% reduction in nutrient exports, and a 36% improvement in 
habitat quality. 
The feasibility study indicates that areas with NBS could be expanded 15 times compared to 
current urban strategies, sparking a discussion on the potential for large-scale integration in 
dense urban environments like Barcelona. This research emphasizes the critical need for 
models that support multi-criteria spatial planning processes, enhance understanding of the 
multiple benefits provided by NBS, and facilitate their integration at the city scale. Effective 
CC adaptation strategies must move beyond addressing individual hazards to consider the 
interconnected nature of risks. 
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