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1 Preface 
 
This background of this report lies in developing an up scalable, open-source approach that 
allows for quantitative assessment of the effectiveness of NBS on reducing pollution load of 
stormwater to receiving waters. Predicting possible future ES delivery is key in the urban 
waterscape in relation to sewage overflow events and extreme rainfall, as they are expected 
to change markedly in the future. Simultaneously, as combined sewage systems are technical 
systems, they offer the ability to be adapted in such a way that the impacts of CSOs on aquatic 
ecosystems and the ecosystems services they provide are mitigated. 
 

2 Summary  
NICHES advances scientific knowledge on restorative NBS through the application and testing 
of impact assessments, models and transitional governance models for improved urban 
drainage in five cases within and beyond Europe. The project hypothesizes and aims to 
demonstrate that sustainable transformations of cities based on restorative NBS which 
enhance water retention capacities in urban areas could widely mitigate impacts from 
combined sewers on aquatic ecosystems. As urban catchment is part of a multi-owner 
landscape with associated stakeholder conflicts linked through teleconnections and multi-
scale governance structures, the involvement of diverse stakeholders and their values from 
the NICHES core cities is vital to co-design the impact assessment and ES module design and 
to ensure maximal applicability. This deliverable describes the development of a modeling 
framework that allows for assessment of the effectiveness of urban Nature Based Solutions 
on aquatic ecosystem services provisioning. In short, we build on an existing framework 
where ecosystem service delivery is determined based on threshold values of water quality 
and ecological variables (Seelen et al., 2022; Zhan et al., 2023). Rather than determining these 
variables from field-based measurements we retrieve them from an aquatic ecosystem 
model, PCLake+. To enable the evaluation of storm water best practices on receiving water, 
we forced PCLake+ with the BATT tracking tool developed by the US Environmental Protection 
AgencyBATT. This spreadsheet tool specifically estimates the removal of pollutants such as 
phosphorus, nitrogen, and sediment from stormwater. To allow for upscaling to a European 
scale, we used open data sources such as Corine Land Cover, the European Soil Database, the 
OpenStreetmap database and the HydroSHEDS database as an input for BATT. We validate 
this approach against Water Framework monitoring data from the Province of Zuid Holland, 
where the NICHES case study Rotterdam is located. This validation shows that our modeling 
framework performs reasonably well at capturing concentrations of dissolved oxygen and 
water transparency, whereas the simulation of concentrations of total nitrogen, total 
phosphorus and Chl-a needs improvement. Furthermore, our modeling exercise for 25 lakes 
in the Province of Zuid Holland also shows that – even in an unrealistic scenario where Nature 
Based Solutions were applied at every potential location- NBS have no significant effect in 
reducing the pollution load to receiving waters. Even though the current validation shows 
that there is room for improvement in further finetuning the modeling approach, it clearly 
shows the value of our approach lies that is up scalable to the European spatial context, open 
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source and allows for quantitative underpinning of the effectiveness of NBS on aquatic 
ecosystem services provisioning. 
 

3 List of abbreviations 
 

EU European Union 
ES Ecosystem Service 
CSO Combined Sewage Overflow 
AEM Aquatic Ecosystem Model 
WFD EU Water Framework Directive 
NBS Nature Based Solution 
BATT Stormwater Best management 

practices Accounting and 
Tracking Tool developed by the 
EPA-USA 

CLC Corinne Land Cover 
BMP Best Management Practices 
OSM OpenStreetMap 
ESDAC European Soil Data Centre 
BAU Business as Usual scenario 
NRMSE Normalized Root Mean Square 

Error (by the mean) 
  

4 Introduction 
 
Healthy freshwater ecosystems can provide vital ecosystem services (ESs), but this capacity 
may be hampered due to water quality deterioration and climate change. In the urban 
waterscape combined sewer overflows (CSOs) form a direct threat to the quality of aquatic 
ecosystems and the species that inhabit them. Additionally, many of the services that the 
urban populace depends on (e.g., recreational fishing, swimming, carbon and nutrient 
retention) are threatened by loss of ecological quality caused by CSOs. CSO events are 
expected to increase with increasing intensity in rainfall due to climate change (van der Werf 
et al., 2023) and hence there is a need to understand how increased CSO events will impact 
both ecological functioning as well as service provisioning.  
 
There is an urgent need to identify new solutions for reducing the impact of increased 
precipitation both on sewage systems and aquatic ecosystems. Nature-Based solutions (NBS) 
offer an alternative to the existing engineered stormwater management systems, having the 
potential to alleviate pressure during high rainfall events while also providing wider societal 
and environmental co-benefits, including increase in local biodiversity, enhance social well-
being of residents and improving the aesthetics of the built environment (Chelli et al., 2025). 
Widespread uptake of NBS may be hampered due to lacking evidence of performance and co-
benefits, approaches and targeted guidance that take the wider social-ecological-
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technological system (SETS) into account. NICHES aims to fill this gap by defining a holistic 
SETS framework for understanding restorative NBS for urban runoff mitigation and the 
resultant reduction of impacts on aquatic systems and resulting ecosystem services.  
 
In the context of CSOs, there are characteristics of the sociological, ecological and 
technological urban waterscape systems that determine vulnerability to CSO events of 
receiving water bodies, its exposure to CSO events, and its capacity to adapt to CSO events 
(Figure 1). Ecosystem services provide a link between the ecological and the socio-
technological system, and a quantitative understanding of ES provisioning under CSO events 
will provide us with a deeper understanding of SETS in the context of urban waterscapes. In 
the NICHES project, we focus on the ecosystem services that the aquatic system provides, 
which are described in more detail in D2.1. 
 
 

 
Figure 1 Scheme illustrating how the three systems of SETs (sociological, ecological and technological) relate to CSO events 
and how different aspects of the systems are influencing aspects present in a risk framework approach. Figure adapted based 
on (Chang et al., 2021). Increasing the nutrient filtration capacity of urban waterscapes through constructed wetlands and 
wadis could be viewed as a Nature Based Solution application. 

 
 
 
 
4.1 Using aquatic ecosystem models to quantify stormwater impacts on 

receiving waters 
 
Quantifying ecosystem services can be instrumental in recognizing the benefits humans 
receive from ecosystems, providing stronger arguments for ecological restoration (Grizzetti 
et al., 2019; Guerry et al., 2015). Conveying restoration impacts in terms of the loss or gain of 
ESs can facilitate effective communication of restoration outcomes to policy-makers and river 
basin authorities responsible for implementing restoration measures (Wortley et al., 2013). 



D2.2 Spatial Explicit Modeling framework 
 

 8 

While modeling terrestrial ecosystem services often focuses on mapping ESs provisioning 
through spatial variations of catchment attributes (e.g., land use, topography, lithology) 
(Nelson et al., 2009), the non-linear dynamics of water quantity and quality necessitate a 
more explicit consideration in aquatic ecosystem service modeling (Grizzetti et al., 2016).  
 
There is increasing evidence that freshwater ecosystem services provisioning is closely linked 
to the ecological quality (or ecological state) of different aquatic environments, including 
shallow lakes (Janssen et al., 2021), deep lakes (Seelen et al., 2022), rivers, and coastal waters 
(Grizzetti et al., 2019). Based on data reported under the European Water Framework 
Directive (WFD), Grizzetti et al. (2019) demonstrated that higher provisioning of ESs is mostly 
correlated with more desirable ecological states (i.e., clear, submerged plant dominated 
waters), particularly for regulating services (e.g., water purification, erosion retention, flood 
protection) and cultural services (e.g., recreation). However, current modeling tools for 
water-related services primarily focus on water quantity (Grizzetti et al., 2016), with limited 
integration of services closely related to water quality (Keeler et al., 2012).  
 
Water quality dynamics are mediated by complex interactions among a myriad of ecosystem 
processes, which are often oversimplified in large-scale modeling frameworks. For instance, 
one widely-used ecosystem service model, InVEST, simplifies by using nutrient loading as a 
proxy for determining the availability of lake-related ESs (Nelson et al., 2009; Polasky et al., 
2011), assuming simple linear responses of ecosystems to nutrient loading. This approach 
contradicts the resistance theory of (Gómez-Baggethun & Ruiz-Pérez, 2011; Ibelings et al., 
2007), which supports threshold-type ecosystem responses to pressures. Consequently, the 
assessment of management actions within InVEST often relies on variables collected at the 
landscape scale (Burkhard et al., 2012), which may be inaccurate due to the aforementioned 
nonlinear responses or ill-fitting when assessing the impacts of in-lake restoration measures 
(Lürling & Mucci, 2020). Keeler et al. (2012) proposed a conceptual framework linking 
ecological-related services with corresponding water quality variables based on a review of 
existing ES models, emphasizing the importance of this link in assessing management actions. 
Given the long-history of development of AEMs (Janssen et al., 2015), linking water quality 
variable outcomes of these models to ESs provisioning approaches is a logical next step to 
capture the full dynamics of how water quality dynamics impacts ESs. As an input, AEMS 
require nutrient loadings and a water budget, that can be derived from catchment or 
watershed models (Clopin et al., 2025).  
 

5 Development of a spatially explicit modeling framework 
The modeling workflow we adopted in D2.2 is displayed in Fig. 1 and is fully open source. We 
used the AEM PCLake+ coupled to an ecosystem services (ES) module as described in D2.1 to 
quantify aquatic ecosystem service provisioning. To allow for the evaluation of different best 
management practices on reducing the pollution load of storm water to receiving waters, we 
forced this AEM-ES with output from Stormwater Best management practices Accounting and 
Tracking Tool developed by the EPA-USA (BATT). In order to be able to upscale to the 
European Scale, we used open pan-European data sources such as HydroSHEDS, we used 
open data sources such as Corine Land Cover, the European Soil Database, the 
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OpenStreetmap database and the HydroSHEDS database as an input for BATT. Below we 
describe in detail the different components of the modeling flow. 
 

 
 

Figure 2: Modeling workflow adopted in D2.2, with open data sources Corine Land Cover, the European Soil Database, the 
OpenStreetMap as well as HydroSHEDS used as an input for BATT and PCLAKE+. 

 
5.1 BATT 
 
BATT (Best Management Practice Accounting and Tracking Tool) is a spreadsheet-based tool 
developed by the United States Environmental Protection Agency to support accounting, 
tracking, and reporting of pollutant load reductions, specifically focusing on nutrients 
(nitrogen and phosphorus) and sediment. It provides a user-friendly interface for 
documenting and quantifying the effectiveness of Best Management Practices (BMPs) 
implemented in a watershed or project area. Figure 3 displays the set-up of the tool.  
 

 
Figure 3: Set-up of the spreadsheet tool BATT 



D2.2 Spatial Explicit Modeling framework 
 

 10 

Rather than using the spreadsheet tool itself, we rebuilt the tool using the relationships and 
tables underlying the tool. BATT requires input regarding land cover (impervious vs non-
impervious substrate), drainage area, soil characteristics (e.g., soil infiltration capacity, and 
the characteristics of the NBS (cf. structural BMPs in BATT). Below we describe in more 
detail what type of input data we used for BATT. 
                                          
5.1.1 ESDAC Soil Database 
The ESDAC Soil Database is a comprehensive collection of soil-related data maintained by 
the European Soil Data Centre (ESDAC), which operates under the Joint Research Centre 
(JRC) of the European Commission. It serves as the central hub for soil data and information 
in Europe. We used the Topsoil physical properties for Europe database (based on LUCAS 
topsoil data) to acquire the Hydrological Soil Groups (HSG) required for BATT. This database 
(Ballabio et al., 2016) has a resolution of 500m and contains 7 soil property maps that have 
been derived using soil point data from the LUCAS 2009 soil survey (around 20,000 points) 
for EU-25, using hybrid approaches like regression kriging. The soil map was originally a 
raster file (GeoTIFF). It was converted to polygons using the Raster to Polygon tool of 
ARCGIS Pro. In the Annex (8.1) you can find the table where the BATT Hydrological Soil 
Groups are mapped on the ESDAC soiltypes.  
 
5.1.2 CORINE land cover data 
CORINE Land Cover (CLC) is a standardized land use/land cover (LULC) dataset developed by 
the European Environment Agency (EEA) as part of the CORINE (Coordination of Information 
on the Environment) program. It provides consistent and comparable land cover data across 
European countries for environmental analysis, spatial planning, and monitoring land 
change over time. It provides a pan-European CORINE Land Cover inventory for 44 thematic 
classes for the 2018 reference year. The dataset has a Minimum Mapping Unit (MMU) of 25 
hectares (ha) for areal phenomena and a Minimum Mapping Width (MMW) of 100 m for 
linear phenomena and is available as vector and as 100 m raster data. We used the vector 
dataset (https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0) to map BATT 
land cover types on CORINE categories, enabling nutrient calculations based on the area of 
each land cover class. The BATT land use conversion table can be found in the annex (8.2). 
Furthermore, to acquire the required hydrological curve numbers, the BATT Land 
use/Landcover combinations were mapped on Corine Land Cover types. The runoff curve 
number is based on the area's hydrologic soil group, land use, treatment and hydrologic 
condition, and is an empirical parameter used in hydrology for predicting direct runoff or 
infiltration from rainfall excess.  
 
5.1.3 OpenStreetMap data 
We used OpenStreetMap data to define the spatial extent of the BATT Nature Based 
Solutions. OpenStreetMap (OSM) is a free, open map database, built by a community of 
volunteers who use GPS devices, aerial imagery, field surveys, and local knowledge to map 
everything from roads and rivers to buildings, parks, bike lanes, hospitals, and more.  
 
The Overpass API was used to retrieve the relevant OSM data: https://overpass-
api.de/api/interpreter. A bounding box was created based on each watershed (see 5.2.2 for 

https://esdac.jrc.ec.europa.eu/
https://land.copernicus.eu/en/products/corine-land-cover
https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0
https://www.openstreetmap.org/
https://overpass-api.de/api/interpreter
https://overpass-api.de/api/interpreter
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details on watershed delineation), which served as the spatial extent for querying relevant 
OSM features. 
Requests were made to the Overpass API using specific key–value pairs to extract relevant 
datasets: 

• Pathways: 
o Key: highway 
o Values: 'footway', 'living street', 'pedestrian', 'sidewalk', 'cycleway', 

'motorway' 
• Buildings: 

o Key: building 
o Values: 'residential', 'apartments', 'terrace', 'house', 'detached', 'annex', 

'hotel', 'semidetached house', 'commercial', 'industrial', 'office', 'retail', 
'supermarket', 'warehouse', 'college', 'government', 'university' 

The retrieved OSM data was then spatially matched to the watershed (see 5.2.2. for details 
on delineation for watersheds) for further analysis. In this study we focused on two BATT 
NBS, i.e., grass swales (Fig. 4) and gravel wetlands. Grass swales convey runoff through an 
open channel vegetated with grass. The primary removal mechanism is infiltration as runoff 
flows are conveyed. In the NICHES project, we assumed that bioswales were implemented 
along each pathway as present in the OSM database within the watershed, which is an 
unrealistic scenario (Sarabi et al., 2020). Space constraints, property ownership 
complexities, lack of financial incentives, design standards and uncertainty of functionality 
and performance have been identified as important barriers for the large-scale 
implementation of urban NBS. We did this to assess the maximum pollution reduction that 
can be achieved through constructing grass swales. 
 

 
Figure 4: Typical grass swale cross-section and pollutant removal mechanism (Ekka et al., 2021) 

The gravel wetlands are based on a design by the University of New Hampshire (UNH) 
Stormwater Center (UNHSC), see Fig. 5. Gravel wetlands provide a temporary surface 
ponding storage of runoff in a vegetated wetland cell that is eventually routed to an 
underlying saturated gravel internal storage reservoir (ISR) for nitrogen treatment. The 
outflow is controlled by an elevated orifice that has its invert elevation equal at the top of 
the ISR layer and provides a retention time of at least 24 hours. BATT assumes that 8 times 
the surface area of a grass swale will run off through the swale. 
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Figure 5: Gravel wetland design by UNH Stormwater Center (UNHSC) Source: 
https://scholars.unh.edu/cgi/viewcontent.cgi?article=1013&context=stormwater 

For NICHES we assumed an unrealistic scenario where gravel wetlands were implemented 
along the length of each building present in the OSM database (i.e., the longest side of the 
building) within the watershed. We assumed the following surface dimensions of the gravel 
wetland, i.e., length of the building (m) x 0.5 (width of the gravel wetland). Furthermore, we 
assumed that the gravel layer was 0.1 m deep and had a soil porosity factor of 0.4. Similar to 
the implementation of grass swales, we ran this unrealistic scenario to assess the maximum 
pollution reduction that can be achieved through constructing gravel wetlands. 
 
We contrasted both NBS with a “business as usual” (BAU) scenario, where BATT nutrient 
calculations were carried out in the absence of a nature-based solution implementation. 
 
 
5.2 PCLake+-ES 
PCLake+ is a process-based ecological model that was developed to simulate water quality 
and assess the trophic state of lakes based on ecological interactions (Janse, 2005, p. 200; 
Janssen et al., 2019). The model is a 0D model and assumes either a fully mixed water column 
connected to a sediment layer, or a two-layer water column differentiating between 
epilimnion and hypolimnion when water is stratified. It models nutrient cycling including 
nitrogen and phosphorus and a simple food web consisting of three functional groups of 
phytoplankton (cyanobacteria, green algae and diatoms), zooplankton, and fish. The model is 
widely used to assess effective management strategies for water bodies in the Netherlands 
and worldwide (Andersen et al., 2020; Janse et al., 2008; Wang et al., 2019). The model can 
capture well the state-shifts that can occur in inland waters, when nutrient loading forces a 
system to transition from a clear macrophyte-dominated state to a turbid phytoplankton-
dominated state. In shallower systems, this state-shift is a step-change happening at a specific 
nutrient loading, defined as the critical nutrient loading. Importantly, due to a process called 
hysteresis, this step-change happens at a different transition point from clear to turbid, then 
from turbid to clear. As such the system can be in two alternative states. In deeper systems, 
however, this transition happens more gradually.  
 
 

https://scholars.unh.edu/cgi/viewcontent.cgi?article=1013&context=stormwater


D2.2 Spatial explicit modeling framework 

 13 

 
Figure 6: Schematization of a stratifying lake in PCLake+ with the water column divided in two layers: epilimnion and 
hypolimnion. For ease of comparison, this scheme of PCLake+ is designed similar to the scheme of the original PCLake model 
published in Janse (2005) and later updated by (Seelen et al., 2022; Zhan et al., 2023). An important addition to the original 
PCLake is the inclusion of a hypolimnion layer. Furthermore, all water state variables on the left side of the vertical grey 
dashed line were duplicated so that they are represented in both the epilimnion and hypolimnion; variables on the right side 
of the vertical grey dashed line were each captured in a single state variable for the entire water column 

 
The model has also been used to estimate impacts on ecological and water quality of climate 
change and changing socio-economical scenarios (Mooij et al., 2007; Yang et al., 2022). Here, 
we expanded the model with a threshold-based ecosystem service delivery (Seelen et al., 
2022; Zhan et al., 2023) based on its existing ecological outcomes. The expansion has been 
described in detail in NICHES D2.1. In short, we link ecosystem state indicators with ecosystem 
service provisioning through a threshold approach. The threshold values reflect the values 
that certain water quality parameter required to support the provision of a given service. In 
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the ES module, the suitability of delivering each ES was expressed by an indicator function 
ranging between 0-1, with “1” representing a fully suitable provisioning, “0” representing an 
unsuitable provisioning, and values in between representing a moderate suitability. 
 
 
5.2.1 Inputs to the model 
To run our developed coupled AEM-ES PCLake+ model several input parameters are 
required. While PCLake+ has over 500 parameters, a large part of these parameters does 
not need to be changed by users as they result from the generic calibration of the model 
(Janse et al., 2010). Users are primarily required to define the boundary conditions of their 
own water system in terms of inflows (water and nutrients), climate and meteorology 
(precipitation, evaporation, irradiance) and lake properties such as depth, lake area and 
fetch (Figure 5). Water temperature can be estimated based on simple parameters defining 
variation around a mean temperature, or time series of water temperature from either 
measurements or physical lake models (e.g. Flake (Kirillin et al., 2011), General Lake Model 
(Hipsey et al., 2019)) can be used. The required inputs to the model closely align with the 
type of information available from climate models and the type of knowledge gathered in 
the construction of river basin management plans in the WFD.  
 

 
Figure 7: Model chain for ecosystem service modeling (Zhan et al., 2023). Rectangles denote state variables, ovals denote 
models, hexagon denotes ecosystem service module, rounded rectangles denote input data, solid arrows denote model input 
or output, dashed arrows denote data input. (PCLake+ in green, input in white, output in orange). 

 
As an up scalable approach was a key requirement of our NICHES spatially explicit modeling 
framework, we used – in addition to the BATT output, open-source data on lake 
characteristics and climate data as well as on water balance were used. PCLake + has a large 
set of parameters (>250), making overfitting the model a risk when subjecting it to site-
specific calibration when data is not abundantly present. Hence, we rely on the generic 
calibration for our study and only adjust boundary conditions of the lake, (i.e., depth, 
hydraulic and nutrient loads, climate forcing, wind fetch, etc.). Table 1 describes what 
databases were sourced to acquire the required PCLAKE input. Apart from BATT input, from 
which we derived nutrient runoff concentrations for the different NBS scenarios, we used 
the HydroSHEDS databases (see 5.2.2 for details).  
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Table 1: Overview of input parameters to PCLAKE+ES and their data sources. 

Category Parameters Description Source 
Water 
balance 

Qin Water inflow to 
the lake 

LakeATLAS 

Res_time Residence time  LakeATLAS 
Depth_avg Average Lake 

Depth 
LakeATLAS 

Lake_area Surface area of 
lake 

LakeATLAS 

Nutrient 
loading 

fPLOAD_TOTAL Total 
phosphorus 
loading to the 
lake 

BATT, 
LakeATLAS 

fNLOAD_TOTAL Total nitrogen 
loading to the 
lake 

BATT, 
LakeATLAS 

 fTLOAD_TOTAL Total 
Suspended 
Solids Loading 
to the Lake 

BATT, 
LakeATLAS 

Climate data tmp Monthly 
temperatures 

LakeATLAS 

Pour_lat Latitude of Lake LakeATLAS 
pre_mm_uyr Yearly rainfall 

data 
LakeATLAS 

Lake 
characteristics 

Sand_fraction Fraction of sand 
in the lake 
sediment 

LakeATLAS 

 Clay_fraction Fraction of clay 
in the lake 
sediment 

LakeATLAS 

 
 
5.2.2  HydroSHEDS databases 
The  HydroSHEDS database offers a suite of global digital data layers in support of hydro-
ecological research and applications worldwide. Its various hydrographic data products 
include catchment boundaries, river networks, and lakes at multiple resolutions and scales. 
For developing the spatial explicit NICHES framework, we made use of the LakeATLAS 
database (Lehner et al., 2022), and the BasinATLAS (Linke et al., 2019). HydroATLAS has 
been created by compiling and re-formatting a wide range of hydro-environmental 
attributes derived from existing global datasets in a consistent and organized manner. The 
resulting data compendium offers attributes grouped in seven categories: hydrology; 
physiography; climate; land cover & use; soils & geology; and anthropogenic influences. For 
each of the sub-datasets, HydroATLAS contains 56 hydro-environmental variables, 
partitioned into 281 individual attributes. 

https://www.hydrosheds.org/products
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We used the LakeATLAS to derive monthly temperatures, lake surface area, average lake 
depth, residence time, and watershed area. LakeATLAS aims to provide data on all global 
lakes with a surface area of at least 10 ha. The inflow to the lakes (Qin) was calculated based 
on the residence time and the lake depth (See Annex, 8.4 R-script Spatial Modeling 
Framework). We assumed that lakes maintained a constant water level with inflow equaling 
outflow. We used BasinATLAS to delineate the watershed area. This watershed was 
intersected with the Corine landcover data to allow for calculation of the nutrient loadings 
to the receiving water using BATT. To ensure that the size of a watershed area as recorded 
in the LakeATLAS was aligned with the size of the watershed calculated using the 
BasinATLAS, we performed an optimization by creating a buffer polygon around the 
BasinATLAS watershed polygon until the deviation between the two size values was 0.001. 
 

6 Model validation and output 
As the HydroSHEDS LakeATLAS contains ~70,000 lakes, and validation of our spatial 
modelling framework at such an extensive spatial scale was beyond the scope of the NICHES 
project, we first applied our spatial modelling framework to the area of Zuid Holland. This 
province, where the NICHES case Rotterdam is located, has a population of over 3.8 million 
as of January 2023 and a population density of about 1,410/km², making it the country's 
most populous province and one of the world's most densely populated areas. Whereas the 
LakeATLAS only contained 5 lakes in the larger Rotterdam area, the area of Zuid Holland 
contains 43 lakes. The provincial boundary of Zuid Holland was obtained from the CBS 
Provincie Actueel shapefile. Using an attribute query of ARC GIS Pro, “Zuid-Holland” was 
selected based on the statnaam field. The selected province was then exported as a 
separate feature layer using the Export Features tool of ARC GIS Pro. This polygon served as 
the basis for intersect and clip operations with other datasets in the subsequent analysis as 
described above (Section 5). 
 
Using the set-up as described above we ran PCLAKE+ ES for a period of 30 yrs. (until 
equilibrium) and evaluated the impact of a business-as-usual scenario (BAU), a scenario with 
maximum implementation of grass swales, and a scenario with maximum implementation 
of gravel wetlands. We ran the model starting from a clear state, as well as from a turbid 
state. Of the 43 lakes in the LakeATLAS databases only 42 lakes could be modeled using the 
spatial modeling framework, as lakes that had a watershed area smaller than the lake 
surface, as well as coastal lakes that did have soil data for less than 90% of the watershed 
were automatically discarded (Fig. 8). 
 
6.1 Model validation  
 
We used the Water Framework Directive monitoring data (WFD) for the validation of our 
model output, using the selection of parameters suggested by Zhan et al. (2023). For each of 
the WFD monitoring locations within the Province of Zuid-Holland the monitoring data of 
the most recent WFD reporting year, i.e., 2023, were downloaded, and summer averages 
were calculated for water transparency (m), total nitrogen (mg/L), total phosphorus (mg/L), 
and dissolved oxygen (mg/L). In line with the definition of the WFD, the summer months 

https://www.arcgis.com/home/item.html?id=7d874e0456a043df86d34e758b5d2a6f
https://www.arcgis.com/home/item.html?id=7d874e0456a043df86d34e758b5d2a6f
https://wkp.rws.nl/downloadmodule
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covered April 1-September 30, and with monitoring typically taking place on a biweekly 
basis. As the input of PCLAKE was based on recent data as well (HydroSHEDS data 2019-
2024), the time window of observed and predicted values align. We evaluated model 
performance, by calculating by normalizing the Root Means Square Error (NRMSE) by the 
mean of the observation. NRMSE values closer to zero represent better fitting models. 
 
 

 
Figure 8: Detailed view on lakes not selected for modelling with the spatially explicit modelling framework (1), with 
LakeATLAS polygons only covering part of the water body (2) and LakeATLAS polygon aligned with waterbody (3).  

For only 12 of the 42 modeled lakes, WFD data was available for transparency, and 
concentrations of dissolved oxygen, total nitrogen and total phosphorus. Below we show 
the fit of the observed vs. predicted starting the model from a turbid situation. Starting the 
model from a clear situation showed similar fits. In general, our spatial explicit modeling 
framework approximated the concentrations of total phosphorus well (NRMSE=0.01), total 
nitrogen (NRMSE=0.10), transparency (NRMSE=0.09) but showed a poor fit with observed 
Chl-A (NRMSE=1.84), and dissolved oxygen concentrations (NRMSE=0.46; Fig 9). Comparing 
the observed depth values with the values recorded in the LakeATLAS shows the potential 
culprit for the rather poor fits for concentrations of dissolved oxygen and Chl-A, with the 
LakeATLAS depth showing a poor fit (NRMSE=0.7) with the observed depth. As lake depth is 
crucial for calculating the water balance as well as the nutrient loadings, having poor 
estimate of depth will have a strong effect on model output.  
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Figure 9: Observed vs predicted values for summer averages of transparency (a), dissolved oxygen concentrations (b), Chl-A 
concentration (c). total nitrogen concentration (d), total phosphorus concentration (e) and depth (f). Predicted depth values 
are the depth values as modelled in the LakeATLAS.  

 
Using the observed depth of lakes as an input parameter to PCLake+ES improved the fit of 
most of the parameters, i.e., transparency (NRMSE=0.07), concentrations of total 
phosphorus (NRMSE=0.01) and total nitrogen (NRMSE=0.1), as well as Chl-A (NRMSE= 0.95), 
and dissolved oxygen (NRMSE=0.33; Fig. 10). 
 
 

 
Figure 10: Observed vs predicted values for summer averages of transparency (a), dissolved oxygen concentrations (b), Chl-
A concentration (c). total nitrogen concentration (d), total phosphorus concentration (e) with the model runs using observed 
depth as an input to PCLAKE+ES  

Next steps in model validation should focus on improving the fits for Chl-A and dissolved 
oxygen, by including a larger validation set, i.e., WFD data (741 water bodies) of the 
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Netherlands, rather than the small dataset of Zuid-Holland, where observation outlier have 
a large impact on model performance evaluations.  
 
6.2 Output 
 
Due to the overall better model performance, we will show the modeling output for the 
PCLAKE+ ES runs which used the observed depth (based on WFD monitoring) as an input 
rather than the LakeATLAS modeled depth. 
 
The Nature Based solutions were only able to marginally reduce the nitrogen and 
phosphorus loading to the receiving water body, see Table 2. 
 
Table 2: Average nutrient loadings according to NBS scenario (value ± standard deviation) 

 Phosphorus loading 
(g/m2/day) 

Nitrogen loading 

(g/m2/day) 
BAU 0.0092 (± 0.022) 0.059 (± 0. 130) 
Grass swales 0.0086 (± 0.021) 0.054 (± 0.127) 
Gravel wetlands 0.0088 (± 0.022) 0.055 (± 0.128) 

 
 
Overall, our model results indicate that applying grass swales or gravel wetlands does not 
significantly (Fisher’s exact test P >0.05) improve the provisioning of regulating services for 
lakes in the Province of Zuid Holland as is evident for phosphorus sequestration (Fig. 11) or 
nitrogen sequestration (Fig. 12), both measures of the capacity of the receiving water body 
for nutrient burial in the sediment.  
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Figure 11: Effect of different NBS scenarios relative to BAU for phosphorus sequestration, a measure of phosphorus burial in 
the sediment of the receiving water body. The results for PCLAKE+ ES runs initiated at the turbid state are shown, with runs 
initiated at the clear state showing comparable results. The letters above the violin plots indicate the presence/absence of 
significant differences as tested by Fischer's exact test. Similar letters indicate that scenarios do not show significant 
differences.  

 
Figure 12: Effect of different NBS scenarios relative to BAU for nitrogen sequestration, a measure of nitrogen burial in the 
sediment of the receiving water body. The results for PCLAKE+ ES runs initiated at the turbid state are shown, with runs 
initiated at the clear state showing comparable results. The letters above the violin plots indicate the presence/absence of 
significant differences as tested by Fischer's exact test. Similar letters indicate that scenarios do not show significant 
differences. 
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Also, cultural services such as the potential for safe and nuisance free swimming (Fig. 13) 
bird watching (Fig. 14 ) or recreational fishing (Fig. 15) are not significantly affected by the 
implementation of grass swales and gravel wetlands (Fisher’s exact test P >0.05). 
 

 
Figure 13: Effect of different NBS scenarios relative to BAU for swimming water provisioning of the receiving water body. 
The results for PCLAKE+ ES runs initiated at the turbid state are shown, with runs initiated at the clear state showing 
comparable results. The letters above the violin plots indicate the presence/absence of significant differences as tested by 
Fischer's exact test. Similar letters indicate that scenarios do not show significant differences. 
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Figure 14: Effect of different NBS scenarios relative to BAU for bird habitat provisioning of the receiving water body. The 
results for PCLAKE+ ES runs initiated at the turbid state are shown, with runs initiated at the clear state showing 
comparable results. The letters above the violin plots indicate the presence/absence of significant differences as tested by 
Fischer's exact test. Similar letters indicate that scenarios do not show significant differences. 

 
 

 
Figure 15: Effect of different NBS scenarios relative to BAU for recreational fishing provisioning of the receiving water body. 
The results for PCLAKE+ ES runs initiated at the turbid state are shown, with runs initiated at the clear state showing 
comparable results. The letters above the violin plots indicate the presence/absence of significant differences as tested by 
Fischer's exact test. Similar letters indicate that scenarios do not show significant differences. 
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Our results suggest that -with almost 100 % of the water bodies of Zuid Holland not 
reaching the environmental targets for WFD, these waters seem to be firmly locked in a 
turbid state. In these waters, diffuse pollution from agriculture and industry rather than 
sewages is most of the time the prime driver of water quality deterioration as is evident 
from the WFD reporting (Fig. 16).  
 
 

 
Figure 16: Nutrient pollution sources of different ZH waterbodies. In red the pollution originating from sewage systems. 
Source: https://www.zuid-holland.nl/actueel/nieuws/april-2025/tussenbalans-krw-provincie-zuid-holland-zet-extra/ 

Upscaling the spatially explicit modelling framework to areas in the Netherlands and beyond 
where sewage overflows play a larger role should more clearly underline what the potential 
of these NBS are for stormwater pollution reduction.  
 
6.3 Future steps 
 
Our modeling exercises show that there are several areas for improvement for our spatially 
explicit modeling framework: 

1. Using observed depth rather than modelled depth as an input for PCLAKE+ES, 
drawing from the WISER database 

2. Improving the delineation of water surface and watersheds to better align with water 
surfaces 

3. Improved model validation using the WFD dataset for the entire Netherlands 
4. Expanding the number of NBS modeling scenario’s 
5. Upscale to the European Scale for urban lakes through application of a filter 

representing the degree of urbanization.  

https://www.zuid-holland.nl/publish/besluitenattachments/vaststelling-regionaal-waterprogramma-zuid-holland-2022-2027/bijlage-b-krw-nota.pdf
https://www.eea.europa.eu/en/datahub/datahubitem-view/dc1b1cdf-5fa0-4535-8c89-10cc051e00db
https://data.jrc.ec.europa.eu/dataset/a0df7a6f-49de-46ea-9bde-563437a6e2ba
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8 Annex 

8.1 BATT land use conversion table 
 
Table 3: BATT land use conversion table and the associated nutrient loadings expressed in lb/acre/year. I stands for 
impervious land use, and P stands for pervious land use. 

BATT_Land_cover Type_of_LC Corine_Land_Cover Phosphorous_lb_ac_yr Nitrogen_lb_ac_yr TSS_lb_ac_yr 

Highways I Road and rail 
networks and 
associated land 

1.34 10.17 1480.13 

Highways I Airports 1.34 10.17 1480.13 

Agriculture P Arable land 0.45 2.59 29.44 

Agriculture P Annual crops 
associated with 
permanent crops 

0.45 2.59 29.44 

Agriculture P Complex cultivation 
patterns 

0.45 2.59 29.44 

Agriculture P Land principally 
occupied by 
agriculture, with 
significant areas of 
natural vegetation 

0.45 2.59 29.44 

Agriculture P Non-irrigated arable 
land 

0.45 2.59 29.44 

Agriculture P Permanently 
irrigated arable land 

0.45 2.59 29.44 

Agriculture P Rice fields 0.45 2.59 29.44 

Agriculture P Agro-forestry areas 0.45 2.59 29.44 

Agriculture P Vineyards 0.45 2.59 29.44 

Agriculture P Fruit tree and berry 
plantations 

0.45 2.59 29.44 

Agriculture P Olive groves 0.45 2.59 29.44 

Agriculture P Pastures 0.45 2.59 29.44 

Agriculture P Heterogeneous 
agricultural areas 

0.45 2.59 29.44 

Agriculture I NA 1.52 11.33 649.51 

Commercial  I Port area’s  1.78 15.08 377.39 

Commercial  P NA NA NA NA 

High Density 
Residential  

I Continuous urban 
fabric 

2.32 14.1 438.95 

High Density 
Residential  

P NA NA NA NA 

Middle Density 
Residential  

I Discontinuous 
urban fabric 

1.96 14.1 438.95 

Middle Density 
Residential  

P NA NA NA NA 

Low Density 
Residential (single 
family) 

I NA 1.52 14.1 438.95 

Low Density 
Residential (single 
family) 

P NA NA NA NA 

Open land I Green urban areas 1.52 11.33 649.51 

Open land I Sport and leisure 
facilities 

1.52 11.33 649.51 

Open land I Bare rock 1.52 11.33 649.51 

Open land I NA 1.52 11.33 649.51 

Open land P Natural grasslands NA NA NA 
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Open land P Beaches, dunes, 
sands 

NA NA NA 

Open land P Sparsely vegetated 
areas 

NA NA NA 

Open land P Burnt areas NA NA NA 

Industrial I Airports 1.78 15.08 377.39 

Industrial  P Mineral extraction 
sites 

1.78 15.08 377.39 

Industrial  P Dump sites 1.78 15.08 377.39 

Industrial  P Construction sites 1.78 15.08 377.39 

Industrial  P Industrial or 
commercial units 

1.78 15.08 377.39 

Forest  P Broad-leaved forest 0.12 0.54 29.44 

Forest  P Coniferous forest 0.12 0.54 29.44 

Forest  P Mixed forest 0.12 0.54 29.44 

Forest  P Moors and 
heathland 

0.12 0.54 29.44 

Forest  P Transitional 
woodland-shrub 

0.12 0.54 29.44 

Forest  P Sclerophyllous 
vegetation 

0.12 0.54 29.44 

Forest  P Inland marshes 0.12 0.54 29.44 

Forest  P Peatbogs 0.12 0.54 29.44 

Forest  I NA 1.52 11.33 649.51 

Water P Glaciers and 
perpetual snow 

0.03 0.27 7.14 

Water P Salt marshes 0.03 0.27 7.14 

Water P Salines 0.03 0.27 7.14 

Water P Intertidal flats 0.03 0.27 7.14 

Water P Water courses 0.03 0.27 7.14 

Water P Water bodies 0.03 0.27 7.14 

Water P Coastal lagoons 0.03 0.27 7.14 

Water P Estuaries 0.03 0.27 7.14 

Water P Sea and ocean 0.03 0.27 7.14 
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8.2 BATT Hydrological Soil group Conversion table 
 

Table 4: BATT Hydrological Soil Group Conversion table using the soil codes of the ESDAC topsoil properties database 

Soil_Type Description Soil_Code 
A Sand 10 
A Loamy_Sand 11 
A Sandy_Loam 12 
B Loam 9 

C 
Sandy_Clay-
Loam 5 

D Clay_Loam 6 
D Silty_Clay-Loam 3 
D Sandy_Clay 4 
D Silty_Clay 2 
D Clay 1 
B Silt 7 
B Silt-Loam 8 
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8.3 BATT Runoff curve number conversion table 
Table 5: BATT Runnoff curve number conversion table, where Land Use/Land Cover combinations are mapped on Corine 
Land Cover categories to retrieve hydrological curve numbers. 

Land_use Land_cover Corine_Landcover A B C D 

Cultivated Straight row 
Annual crops associated with 
permanent crops 76 86 90 93 

Cultivated Straight row Complex cultivation patterns 76 86 90 93 

Cultivated Straight row 

Land principally occupied by 
agriculture, with significant areas of 
natural vegetation 76 86 90 93 

Cultivated Straight row Non-irrigated arable land 76 86 90 93 
Cultivated Straight row Permanently irrigated arable land 76 86 90 93 
Cultivated Contoured_poor  70 79 84 88 
Cultivated Contoured_good  65 75 82 86 
Cultivated Con_terr_poor  66 74 80 82 
Cultivated Con_terr_good  62 71 77 81 
Cultivated Bunded_poor  67 75 81 83 
Cultivated Bunded_good  59 69 76 79 
Cultivated Paddy Rice fields 95 95 95 95 
Orchards Understory Agro-forestry areas 39 53 67 71 
Orchards No_understory Vineyards 41 55 69 73 
Orchards No_understory Fruit tree and berry plantations 41 55 69 73 
Orchards No_understory Olive groves 41 55 69 73 
Forest Dense Broad-leaved forest 26 40 58 61 
Forest Dense Coniferous forest 26 40 58 61 
Forest Dense Mixed forest 26 40 58 61 
Forest Open Transitional woodland/shrub 28 44 60 64 
Forest Open Inland marshes 28 44 60 64 
Forest Open Peatbogs 28 44 60 64 
Forest Scrub Moors and heathland 33 47 64 67 
Pasture Poor  68 79 86 89 
Pasture Fair Pastures 49 69 79 84 
Pasture Good Natural grasslands 39 61 74 80 
Wasteland  Sclerophyllous vegetation 71 80 85 88 
Wasteland  Sparsely vegetated areas 71 80 85 88 
Wasteland  Dump sites 71 80 85 88 
Wasteland  Beaches, dunes, sands 71 80 85 88 
Wasteland  Burnt areas 71 80 85 88 
Dirt_road   73 83 88 90 
Hard_surface  Bare rock 77 86 91 93 
Open_space Good Green urban areas 39 61 74 80 
Open_space Fair Sport and leisure facilities 49 69 79 84 
Commercial  Continuous urban fabric 89 92 94 95 
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Commercial  Port areas 89 92 94 95 
Industrial  Industrial or commercial units 81 88 91 93 
Residential  Discontinuous urban fabric 77 85 90 92 

Paved  
Road and rail networks and 
associated land 98 98 98 98 

Paved  Airports 98 98 98 98 
Gravel_street  Mineral extraction sites 76 85 89 91 
Gravel_street  Construction sites 76 85 89 91 
Dirt_street   72 82 87 89 
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8.4 Spatially explicit modeling framework script for all lakes in EU 
 
 
##===Script for NICHES analyses on all lakes in EU=== 
 
#needed datasets 
 
#-CORINE LAND COVER 
 
#--Land cover classes 
 
#-LAKEATLAS 
 
#--Temperature monthly 
 
#--Residence time 
 
#--Average lake depth 
 
#--Latitude 
 
#--Lake area 
 
#--Watershed area 
 
#-BASINATLAS 
 
#--Basin shape delineation for land cover extraction 
 
#-SOIL map 
 
#--Soil characteristics to get hydrological runoff categories of BATT 
 
# 
 
 
rm(list=ls()) 
 
library(lubridate) 
library(dplyr)  
library(data.table)  
library(stringr) 
library(foreach) 
library(doSNOW) 
library(powerjoin) 
library(ggplot2) 
library(sf) 
library(tidyverse, quietly=T) 
library(osmdata) 
library(rcompanion) 
library(multcompView) 
library(osmdata) 
library(units) 
 
options(scipen = 999) 
 
nearZero <- 1E-28 
days_of_summer <- expand.grid(seq(91, 274, 1), seq(0, 40)) 
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summer_vec <- days_of_summer$Var1 + (365 * days_of_summer$Var2) 
 
 
sNOW = str_replace_all(Sys.time(), "[[:punct:]]", "") 
 
sFOLDER = file.path("C:","Users","SvenT","OneDrive - 
NIOO","Documents","NICHES","ArcGIS","Comple_shp_files") 
sFOLDER2 = file.path("C:","Users","SvenT","OneDrive - 
NIOO","Documents","NICHES","ArcGIS") 
sFOLDER_Rotterdam = 
file.path("C:","Users","FrancisD","Documents","NICHES","GIS") 
sFOLDER_Cschijf = 
file.path("C:","Users","FrancisD","Documents","NICHES","GIS","final_shp
2") 
sFOLDER_Corine = 
file.path("C:","Users","FrancisD","Documents","NICHES","u2018_clc2018_v
2020_20u1_fgdb","u2018_clc2018_v2020_20u1_fgdb","DATA","U2018_CLC2018_V
2020_20u1.gdb") 
 
 
shapeLAKES <- read_sf(dsn = sFOLDER_Rotterdam, layer = 
"Lakes_Rotterdam") 
 
shapeBASINS <- read_sf(dsn = sFOLDER_Cschijf, layer = 
"BasinATLAS_Europe") 
 
shapeCORINE <- read_sf(dsn = sFOLDER_Rotterdam, layer = 
"Corine_ZuidHolland") 
 
shapeURBAN <- read_sf(dsn = sFOLDER_Cschijf, layer = 
"Urban_Europe_final") 
 
shapeSOILS <- read_sf(dsn = sFOLDER_Cschijf, layer = "Soil_map_Europe") 
colnames(shapeSOILS)[colnames(shapeSOILS) == "gridcode"] <- "Soil_Code" 
 
shapeLAKES = st_make_valid(shapeLAKES) 
 
shapeLAKES = st_transform(shapeLAKES, crs=st_crs(shapeCORINE)) 
 
shapeBASINS=st_make_valid(shapeBASINS) 
 
shapeBASINS = st_transform(shapeBASINS, crs=st_crs(shapeCORINE)) 
 
shapeSOILS=st_make_valid(shapeSOILS) 
 
shapeSOILS = st_transform(shapeSOILS, crs=st_crs(shapeCORINE)) 
 
shapeURBAN = st_make_valid(shapeURBAN) 
 
shapeURBAN = st_transform(shapeURBAN, crs=st_crs(shapeCORINE)) 
 
shapeCORINE <- shapeCORINE[st_geometry_type(shapeCORINE) != 
"MULTISURFACE", ] 
shapeCORINE=st_make_valid(shapeCORINE) 
 
 
#acceptable difference between calculated watershed area and watershed 
area of HYDROLAKES (in fraction) 
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fTHRESH_WSHD = 0.001 
fBUFF_CHANGE_FRAC = 0.05 #change in buffer width (fraction of previous 
buffer) 
 
#acceptable difference between soil map and watershed (0.5 means at 
least half the defined watershed has to have valid land use mapping) 
fTHRESH_SOIL = 0.5 
 
sf::sf_use_s2(TRUE) 
 
#Corine landcover legend 
CLC_legend <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","u2018_clc
2018_v2020_20u1_fgdb","u2018_clc2018_v2020_20u1_fgdb","Legend","CLC_leg
end.csv")) 
colnames(CLC_legend)[colnames(CLC_legend) == "CLC_CODE"] <- "Code_18" 
colnames(CLC_legend)[colnames(CLC_legend) == "LABEL3"] <- 
"Corine_Landcover" 
 
#BATT to Corine landcover conversion table 
Conversion <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"BATT_Conversion_Table.csv")) 
colnames(Conversion)[colnames(Conversion) == "Corine_Land_Cover"] <- 
"Corine_Landcover" 
colnames(Conversion)[colnames(Conversion) == "BATT_Land_cover"] <- 
"BATT_Landcover" 
 
#Curve number table 
Curve_Number <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"Curve_Number.csv")) 
 
#Runoff coefficient table 
Runoff_Coefficient <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"Runoff_Coefficient.csv")) 
 
#Soil types table 
Soil_types <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"Soil_types.csv")) 
 
#Nutrient loads per soil type table 
Loading <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"Loading.csv")) 
 
#Table of pathway types and their corresponding widths 
Pathway_width <- 
fread(file.path("C:","Users","FrancisD","Documents","NICHES","BATT", 
"Pathways.csv")) 
colnames(Pathway_width)[colnames(Pathway_width) == "Path"] <- "highway" 
 
 
# Optional for spatial filter: extract lakes within a 5 km radius of 
urban centers 
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# colnames(shapeURBAN)[colnames(shapeURBAN) == "gridcode"] <- 
"Urban_class" 
# UrbanClass30 <- shapeURBAN %>% filter(Urban_class == "30") 
 
#Set url osm data 
set_overpass_url("https://overpass-api.de/api/interpreter") 
 
#PCLake+ initialization code---- 
dirHome <- "C:/Users/FrancisD/Documents/PCLAKE/PCModel-master/PCModel-
master/Licence_agreement/I_accept/" # location of the PCModel1350 
folder 
dirShell <- file.path(dirHome, "PCModel1350", "PCModel", "3.00", 
"Models", "PCLake+", "6.13.16", "PCShell") 
dirCpp_root <- file.path(dirHome, "PCModel1350", "PCModel", "3.00", 
"Frameworks", "Osiris", "3.01", "PCLake_plus") 
nameWorkCase <- "PCLake_plus_NICHES_BATT" 
fileDATM <- file.path(dirHome, "PCModel1350", "PCModel", "3.00", 
"Models", "PCLake+", "6.13.16", 
"PL613162PLUS_ESs_NICHES_BATTPCLake_20250320.xls") 
 
## load all the functions 
source(file.path(dirShell, "scripts", "R_system", "functions.R")) 
 #load base functions by Luuk van Gerven (2012-2016) 
source(file.path(dirShell, "scripts", "R_system", 
"functions_PCLake.R"))  
 
## 1. Making folder structure  
PCModelWorkCaseSetup(dirSHELL = dirShell,  
   dirCPP_ROOT = dirCpp_root, 
   nameWORKCASE = nameWorkCase) 
 
## 2. Load file 
lDATM_SETTINGS <- PCModelReadDATMFile_PCLakePlus(fileXLS = fileDATM, 
       locDATM = "excel", 
       locFORCING = "excel", 
       readAllForcings = F) 
 
 
if (exists("PC_Lake")==TRUE){ 
 rm("PC_Lake") 
} 
 
 
 
#Stappenplan 
 
#1: Select basins from HYDROATLAS which intersect with a given lake---- 
 
for (nLAKE in 1:nrow(shapeLAKES)){ 
  
 #select lake 
 pLAKE = shapeLAKES[nLAKE,] 
 pLAKE <- st_transform(pLAKE, st_crs(shapeLAKES)) 
  
 # Optional filter: select lakes located within 5,000 meters of urban 
centers 
 # This step identifies lakes in close proximity to urban areas based 
on a buffer distance 
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 # #Get Lakes in urban areas 
 # Urban_buffer <- st_buffer(UrbanClass30, dist = 5000) 
 # 
 # #Intersecting lakes 
 # Urban_buffer <- st_transform(UrbanClass30, st_crs(pLAKE)) 
 # vUrban_Overlap = st_intersects(Urban_buffer, pLAKE,sparse=FALSE) 
 # pUrban_Class = Urban_buffer[vUrban_Overlap,] 
 #  
 #  
 # if (nrow(pUrban_Class) != 0){  
  
 #get basins that intersect with the lake polygon 
 vBASINS_OVERLAP = st_intersects(shapeBASINS, pLAKE,sparse=FALSE) 
  
 pBASINS = shapeBASINS[vBASINS_OVERLAP,] 
  
 #buffer the lake so that it roughly aproximates its watershed 
  
 # Calculate initial buffer width 
 #note the watershed area of hydroATLAS does not include the lake 
surface 
  
 fBUFFER <- ((sqrt((pLAKE$Wshd_area+pLAKE$Lake_area) / pi)) - 
(sqrt(pLAKE$Lake_area / pi))) *1000 #in m 
  
 #if(fBUFFER <0){fBUFFER =sqrt(pLAKE$Lake_area / pi)*1000} 
  
 # Create the buffered lake geometry 
 pLAKE_BUF <- st_buffer(pLAKE, dist = fBUFFER) 
  
 # Cut the buffered lake by the selected basin polygons 
 pLAKE_WSHD <- st_intersection(pLAKE_BUF,pBASINS) 
  
 fAREA_WATERSHED = drop_units(sum(st_area(pLAKE_WSHD))/1000000) 
  
 #fraction of calculated watershed area relative to the desired 
(hydrolakes) watershed size 
 fAREAWSHD_DIV = 1.0-
(min(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lake_area),as.numeric
(fAREA_WATERSHED))/max(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lak
e_area),as.numeric(fAREA_WATERSHED))) 
  
 #basin max size 
 fAREA_BASINS = sum(as.numeric(st_area(pBASINS)))/1000000 
  
 #while loop to optimize watershed area 
 while(fAREAWSHD_DIV > fTHRESH_WSHD ){ 
 #break if the watershed area needs to increase, but there is no more 
area of basins left 
 if((round(as.numeric(fAREA_WATERSHED),2) == 
round(as.numeric(fAREA_BASINS),2)) & (as.numeric(pLAKE$Wshd_area) > 
as.numeric(fAREA_WATERSHED))){ 
 pLAKE$Oversized <- 1 # mark as oversized 
 break() 
 } 
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 if(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lake_area) < 
as.numeric(fAREA_WATERSHED)){ 
 print(paste("decrease: ", fAREAWSHD_DIV)) 
 #decrease buffer size 
  
 #buffer the lake so that it roughly aproximates its watershed 
  
 # set buffer width based on previous buffer width  
 fBUFFER <- fBUFFER*(1-fBUFF_CHANGE_FRAC)#in m 
  
 # Create the buffered lake geometry 
 pLAKE_BUF <- st_buffer(pLAKE, dist = fBUFFER) 
  
 # Cut the buffered lake by the selected basin polygons 
 pLAKE_WSHD <- st_intersection(pLAKE_BUF,pBASINS) 
  
 fAREA_WATERSHED = sum(as.numeric(st_area(pLAKE_WSHD)))/1000000 
  
 #fraction of calculated watershed area relative to the desired 
(hydrolakes) watershed size 
 fAREAWSHD_DIV = 1.0-
(min(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lake_area),as.numeric
(fAREA_WATERSHED))/max(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lak
e_area),as.numeric(fAREA_WATERSHED))) 
  
 }else if(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lake_area) > 
as.numeric(fAREA_WATERSHED)){ 
 print(paste("increase: ", fAREAWSHD_DIV, "buffer size: ",fBUFFER)) 
 #increase buffer size 
  
 #buffer the lake so that it roughly aproximates its watershed 
  
 # set buffer width based on previous buffer width  
 fBUFFER <- fBUFFER*(1+fBUFF_CHANGE_FRAC)#in m 
  
 # Create the buffered lake geometry 
 pLAKE_BUF <- st_buffer(pLAKE, dist = fBUFFER) 
  
 # Cut the buffered lake by the selected basin polygons 
 pLAKE_WSHD <- st_intersection(pLAKE_BUF,pBASINS) 
  
 fAREA_WATERSHED = sum(as.numeric(st_area(pLAKE_WSHD)))/1000000 
  
 #fraction of calculated watershed area relative to the desired 
(hydrolakes) watershed size 
 fAREAWSHD_DIV = 1.0-
(min(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lake_area),as.numeric
(fAREA_WATERSHED))/max(as.numeric(pLAKE$Wshd_area)+as.numeric(pLAKE$Lak
e_area),as.numeric(fAREA_WATERSHED))) 
  
 }else{ 
 print(paste("break: ", fAREAWSHD_DIV)) 
 break() 
  
 } 
  
 } 
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 pLAKE_WSHD=st_union(pLAKE_WSHD) 
  
 #Check if watershed and soil map match 
 pSOIL_WSHD = st_intersection(shapeSOILS, pLAKE_WSHD) 
  
 WSHD_area <- drop_units(st_area(pLAKE_WSHD)) 
 Soil_area = drop_units(sum(st_area(pSOIL_WSHD))) 
  
 #calculate if there is soil map fill in the WSHD, we say if there is 
less then 50% fill we do not move forward with said lake 
 if ((WSHD_area - Soil_area)/WSHD_area<fTHRESH_SOIL){  
  
 #Overlappende polygonen tussen shapeCorine en pLAKE_WSHD vinden 
 Corine_intersects <- st_intersects(shapeCORINE, pLAKE_WSHD, sparse = 
FALSE) 
 shapeCORINE_crop <- shapeCORINE[apply(Corine_intersects, 1, any), ] 
  
 #Intersection uitvoeren 
 pLANDCOVER_WSHD <- st_intersection(shapeCORINE_crop, pLAKE_WSHD) 
  
  
 #build  
 st_area(pLANDCOVER_WSHD) 
  
  
 #Implement BATT 
  
 #Make empty BATT df 
 BATT <- data.frame() 
  
 #Add Soil map to Corine landcover 
 ##Check if both shapefiles have a valid CRS 
 pLANDCOVER_WSHD <- st_transform(pLANDCOVER_WSHD, st_crs(shapeSOILS)) 
 Landcover <- st_transform(pLANDCOVER_WSHD, st_crs(shapeSOILS)) 
  
  
 ##Spatial join between land use and soil types 
 landuse_soil <- st_join(Landcover, shapeSOILS, join = st_intersects) 
  
 landuse_soil$area_new = 
(as.numeric(unlist(st_area(landuse_soil)))/10000)*2.47105381 
  
 landuse_soil$Area_Ac <- (landuse_soil$Area_Ha * 2.47105381) 
 BATT <- landuse_soil %>% 
 group_by(Code_18, Soil_Code) %>% 
 summarise(Total_Area_Ac = sum(area_new)) 
  
 #Merge BATT and CLC_Legend by Code_18 
 BATT <- merge(BATT, CLC_legend[,c("Code_18", "Corine_Landcover")], by 
= "Code_18", all.x = TRUE) 
  
 #Add hydrological soil typing 
 BATT <- merge(BATT, Soil_types[,c("Soil_Code", "Soil_Type")], by = 
"Soil_Code", all.x = TRUE) 
  
 #Add Runoff coefficient 
 BATT <- merge(BATT, Runoff_Coefficient[,c("Runoff_coefficient", 
"Corine_Landcover")], by = "Corine_Landcover", all.x = TRUE) 
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 #Add Curve number 
 ##Create temporary df 
 Temp_BATT <- BATT %>% 
 left_join(Curve_Number, by = "Corine_Landcover") 
  
 ##Create a new column based on Soil_Type to get the corresponding 
value from columns A, B, C, D 
 Temp_BATT <- Temp_BATT %>% 
 mutate("Curve_Number" = case_when( 
 Soil_Type == "A" ~ A, 
 Soil_Type == "B" ~ B, 
 Soil_Type == "C" ~ C, 
 Soil_Type == "D" ~ D 
 )) 
 #Merge  
 BATT$Curve_Number <- Temp_BATT$Curve_Number 
  
  
 #Merge BATT with Conversion table 
 BATT <- merge(BATT, 
Conversion[,c("BATT_Landcover","Type_of_LC","Corine_Landcover","Phospho
rous_lb_ac_yr","Nitrogen_lb_ac_yr","TSS_lb_ac_yr")], by = 
c("Corine_Landcover"), all.x = TRUE) 
  
  
 #Calculate P & N loading, Potential max retention, Direct surface 
runoff 
 ##Calculate P, N, TSS if soil is Pervious and NA 
 BATT <- BATT %>% 
 left_join(Loading, by = "Soil_Type") %>% 
 mutate( 
 Phosphorous_lb_ac_yr = ifelse(is.na(Phosphorous_lb_ac_yr.x), 
Phosphorous_lb_ac_yr.y, Phosphorous_lb_ac_yr.x), 
 Nitrogen_lb_ac_yr = ifelse(is.na(Nitrogen_lb_ac_yr.x), 
Nitrogen_lb_ac_yr.y, Nitrogen_lb_ac_yr.x), 
 TSS_lb_ac_yr = ifelse(is.na(TSS_lb_ac_yr.x), TSS_lb_ac_yr.y, 
TSS_lb_ac_yr.x) 
 ) %>% 
 select(-ends_with(".x"), -ends_with(".y")) 
  
 BATT <- BATT %>% 
 select(-contains(".y")) 
  
  
 #kg/km2/yr 
 BATT$Phosphorous_kg_km2_yr = BATT$Phosphorous_lb_ac_yr*112.09 
 BATT$Nitrogen_kg_km2_yr = BATT$Nitrogen_lb_ac_yr*112.09 
 BATT$TSS_kg_km2_yr = BATT$TSS_lb_ac_yr*112.09 
 BATT$Total_Area_km2 = BATT$Total_Area_Ac*0.004046860338725 
 BATT$Land2Lake_Area = BATT$Total_Area_km2/ pLAKE$Lake_area 
  
 # Calculate potential maximum retention based on Curve Number method 
 BATT$Potential_maximum_retention <- (25400/BATT$Curve_Number)-254 
  
 # Estimate direct surface runoff  
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 BATT$Direct_surface_runoff <- ((pLAKE$pre_mm_uyr-
0.2*BATT$Potential_maximum_retention)^2)/(pLAKE$pre_mm_uyr+0.8*BATT$Pot
ential_maximum_retention)  
  
 # Convert nutrient and sediment loads from per kmÂ² to total yearly 
load towards the lake 
 BATT$Phosphorous_kg_yr <- BATT$Phosphorous_kg_km2_yr * 
BATT$Total_Area_km2 / BATT$Land2Lake_Area 
 BATT$Nitrogen_kg_yr <- BATT$Nitrogen_kg_km2_yr * BATT$Total_Area_km2 / 
BATT$Land2Lake_Area 
 BATT$TSS_kg_yr <- BATT$TSS_kg_km2_yr * BATT$Total_Area_km2 / 
BATT$Land2Lake_Area 
  
 #calculate Qin based on hydrolakes residence time 
 #residence time in days 
 #average depth in m *1000 for mm 
 fQIN_HYDROLAKES = (pLAKE$Depth_avg*1000)/pLAKE$Res_time #mm/day 
  
 #calculate concentrations of runoff according to BATT 
 ##Phosphorous 
 BATT$Phosphorous_g_m2_day = 
(BATT$Phosphorous_kg_yr*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT$Phosphorous_mg_L = (BATT$Phosphorous_g_m2_day / 
(BATT$Direct_surface_runoff/365))*1000 
  
 ##Nitrogen 
 BATT$Nitrogen_g_m2_day = 
(BATT$Nitrogen_kg_yr*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT$Nitrogen_mg_L = (BATT$Nitrogen_g_m2_day / 
(BATT$Direct_surface_runoff/365))*1000 
  
 ##TSS 
 BATT$TSS_g_m2_day = 
(BATT$TSS_kg_yr*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT$TSS_mg_L = (BATT$TSS_g_m2_day / 
(BATT$Direct_surface_runoff/365))*1000 
  
 #weighted average concentration based on area 
 library(stats) 
 fP_CONC_WA= weighted.mean( BATT$Phosphorous_mg_L, BATT$Total_Area_Ac, 
na.rm = TRUE ) 
 fN_CONC_WA= weighted.mean( BATT$Nitrogen_mg_L, BATT$Total_Area_Ac, 
na.rm = TRUE ) 
 fT_CONC_WA= weighted.mean( BATT$TSS_mg_L, BATT$Total_Area_Ac, na.rm = 
TRUE ) 
  
 #Total 
 fTotal_Phosphorous = sum(BATT$Phosphorous_kg_yr) 
 fTotal_Nitrogen = sum(BATT$Nitrogen_kg_yr) 
 fTotal_TSS = sum(BATT$TSS_kg_yr) 
  
 # Estimate total nutrient and sediment loads to the lake (g/m2/day) 
 fPLOAD_TOTAL = (fP_CONC_WA * fQIN_HYDROLAKES)/1000 
 fNLOAD_TOTAL = fN_CONC_WA * (fQIN_HYDROLAKES/1000) 
 fTLOAD_TOTAL = fT_CONC_WA * (fQIN_HYDROLAKES/1000) 
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 #BATT_BMP 
 ##BMP Grass swale 
 # Select relevant columns including land cover type, area, nutrient 
loads, and runoff 
 BATT_BMP_gs <- 
BATT[,c("BATT_Landcover","Corine_Landcover","Type_of_LC","Total_Area_km
2", "Phosphorous_kg_yr","Nitrogen_kg_yr","TSS_kg_yr", 
"Direct_surface_runoff", "geometry")] 
 #"geometry", 
 BATT_BMP_gs = st_make_valid(BATT_BMP_gs) 
 BATT_BMP_gs = st_transform(BATT_BMP_gs, crs=st_crs(shapeCORINE)) 
  
 #Change crs from pLAKE_WSHD to wgs84 for osmdata 
 pLAKE_WSHD_wgs84 <- st_transform(pLAKE_WSHD, crs = 4326) 
  
 #Create boundingbox from pLAKE_WSHD 
 bbox <- st_bbox(pLAKE_WSHD_wgs84) 
  
 # Query OpenStreetMap (OSM) data for pathway-related features within 
the study area 
 pathways <- opq(bbox = c(bbox["xmin"], bbox["ymin"], bbox["xmax"], 
bbox["ymax"])) %>% 
 add_osm_feature( 
 key = 'highway', 
 value = c('footway', 'living_street', 'pedestrian', 'sidewalk', 
'cycleway', 'motorway') 
 ) %>% 
 osmdata_sf() 
  
 # Reproject OSM pathway data to match the CRS of the CORINE land cover 
layer 
 # Check if osm_lines exist, otherwise create an empty sf collection 
with the correct CRS 
 if (is.null(pathways$osm_lines) || nrow(pathways$osm_lines) == 0) { 
 # No pathways found -> GS values equal to total values 
 fPLOAD_TOTAL_GS <- fPLOAD_TOTAL 
 fNLOAD_TOTAL_GS <- fNLOAD_TOTAL 
 fTLOAD_TOTAL_GS <- fTLOAD_TOTAL 
 BATT_BMP_gs$Runoff_reduced <- BATT$Direct_surface_runoff 
 } else { 
  
 pathways$osm_lines <- st_transform(pathways$osm_lines, crs = 
st_crs(shapeCORINE)) 
  
 # Perform spatial intersection to extract overlapping areas between 
BATT land areas and pathway lines 
 Pathways_intersect <- st_intersection(BATT_BMP_gs, pathways$osm_lines) 
  
 # Filter for right land use 
 Landcover_list <- list("High Density Residential","Middle Density 
Residential","Low Density Residential (single family)","Highways", 
"Commercial","Industrial") 
 Pathways_filtered<- Pathways_intersect %>% 
 filter(BATT_Landcover %in% Landcover_list & Type_of_LC == "I") 
  
 # Get length and width of pathways 
 Pathways_filtered$Length <- st_length(Pathways_filtered) 
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 Pathways_filtered <- merge(Pathways_filtered, Pathway_width, by = 
"highway", all.x = TRUE) 
  
 # Calculate storage capacity 
 Pathways_filtered$DSV_storage <- 0.5 * Pathways_filtered$Length * 0.3 
#per pathway, m3 
 BATT_BMP_gs$DSV_capacity = ifelse(BATT_BMP_gs$BATT_Landcover %in% 
Pathways_filtered$BATT_Landcover, 
(sum(Pathways_filtered$DSV_storage)*1000)/(sum(Pathways_filtered$Length
*0.5)), NA) #total capacity per land cover 
  
  
 #Grass swale area 
 # Estimate the potential area for grass swales alongside selected 
pathways 
 # Assumes a 0.5 meter width of green infrastructure per meter of 
pathway length 
 Pathways_filtered$Green_area = 0.5 * Pathways_filtered$Length 
  
 # Summarize total bioswale (green area) surface in square meters 
 Green_area <- data.frame( 
 Bioswale_total_area_m2 = sum(Pathways_filtered$Green_area) 
 ) 
  
 # Estimate total water storage capacity of the bioswales (liters per 
mÂ²) 
 Green_area$Bioswale_storage_L_m2 = sum(Pathways_filtered$DSV_storage, 
na.rm = TRUE) 
  
 #Calculate reduced surface runoff due to green infrastructure 
 BATT_BMP_gs <- BATT_BMP_gs %>% 
 mutate(Runoff_reduced = 
ifelse(!is.na(DSV_capacity),(Direct_surface_runoff-
DSV_capacity),Direct_surface_runoff)) 
  
 # Calculate the ratio between contributing land area and lake area 
 BATT_BMP_gs$ratio <-BATT_BMP_gs$Total_Area_km2/ pLAKE$Lake_area 
  
 # Adjust surface runoff based on reduced runoff and land-to-lake ratio 
 BATT_BMP_gs$Surface_runoff_area <- BATT_BMP_gs$Runoff_reduced * 
BATT_BMP_gs$ratio 
  
 # Calculate the fraction of runoff that remains 
 BATT_BMP_gs$runoff_reduction_fraction = 
BATT_BMP_gs$Runoff_reduced/BATT_BMP_gs$Direct_surface_runoff 
  
 # Estimate the adjusted total inflow (Qin) to the lake  
 fQIN_HYDROLAKES_gs = 
weighted.mean(BATT_BMP_gs$runoff_reduction_fraction* fQIN_HYDROLAKES, 
BATT_BMP_gs$Total_Area_km2 , na.rm = TRUE ) 
  
  
 ##Nutrient reduction 
 #Sum area per landcover per pathway 
 Pathways_filtered$area <- 
Pathways_filtered$Length*Pathways_filtered$Width #m2 
 fTotal_A_pathway= sum(Pathways_filtered$area)/1000000 #km2 
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 #Calculate area (fraction) of pathway in land use cat 
 #apply a factor for runoff through grass swales of 8:1 (8 times the 
area goes through the swale) 
 fCONV_RUNOFF = 1#8/1 
 BATT_BMP_gs$Perc_Area = ifelse(BATT_BMP_gs$BATT_Landcover %in% 
Pathways_filtered$BATT_Landcover, min(BATT_BMP_gs$Total_Area_km2, 
(fTotal_A_pathway*fCONV_RUNOFF)/BATT_BMP_gs$Total_Area_km2), NA) 
  
  
 # Recalculate annual loads of phosphorus, nitrogen, and TSS based on 
the treated area (Perc_Area), applying reduction factors to the treated 
portion while keeping untreated loads unchanged 
 #Phosphorous 
 BATT_BMP_gs <- BATT_BMP_gs %>% 
 mutate(Phosphorous_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(Phosphorous_kg_yr*Perc_Area*0.64)+(Phosphorou
s_kg_yr*(1-Perc_Area)),Phosphorous_kg_yr)) 
 #Nitrogen 
 BATT_BMP_gs <- BATT_BMP_gs %>% 
 mutate(Nitrogen_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(((Nitrogen_kg_yr/100*Perc_Area)*0.7687)+(Nitr
ogen_kg_yr/100*(100-Perc_Area))),Nitrogen_kg_yr)) 
  
 #TSS 
 BATT_BMP_gs <- BATT_BMP_gs %>% 
 mutate(TSS_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(((TSS_kg_yr/100*Perc_Area)*0.1)+(TSS_kg_yr/10
0*(100-Perc_Area))),TSS_kg_yr)) 
  
  
 #calculate concentrations of runoff according to BATT 
 ##Phosphorous 
 BATT_BMP_gs$Phosphorous_g_m2_day = 
(BATT_BMP_gs$Phosphorous_kg_yr_reduced*1000/365)/(pLAKE$Lake_area*10000
00) 
 BATT_BMP_gs$Phosphorous_mg_L = (BATT_BMP_gs$Phosphorous_g_m2_day / 
(BATT_BMP_gs$Runoff_reduced/365))*1000 
  
 ##Nitrogen 
 BATT_BMP_gs$Nitrogen_g_m2_day = 
(BATT_BMP_gs$Nitrogen_kg_yr_reduced*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT_BMP_gs$Nitrogen_mg_L = (BATT_BMP_gs$Nitrogen_g_m2_day / 
(BATT_BMP_gs$Runoff_reduced/365))*1000 
  
 ##TSS 
 BATT_BMP_gs$TSS_g_m2_day = 
(BATT_BMP_gs$TSS_kg_yr_reduced*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT_BMP_gs$TSS_mg_L = (BATT_BMP_gs$TSS_g_m2_day / 
(BATT_BMP_gs$Runoff_reduced/365))*1000 
  
 #weighted average concentration based on area 
 library(stats) 
 fP_CONC_WA_GS= weighted.mean( BATT_BMP_gs$Phosphorous_mg_L, 
BATT_BMP_gs$Total_Area_km2, na.rm = TRUE ) 
 fN_CONC_WA_GS= weighted.mean( BATT_BMP_gs$Nitrogen_mg_L, 
BATT_BMP_gs$Total_Area_km2, na.rm = TRUE ) 
 fT_CONC_WA_GS= weighted.mean( BATT_BMP_gs$TSS_mg_L, 
BATT_BMP_gs$Total_Area_km2, na.rm = TRUE ) 
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 #Total 
 fTotal_Phosphorous_Pathways = 
sum(BATT_BMP_gs$Phosphorous_kg_yr_reduced) 
 fTotal_Nitrogen_Pathways = sum(BATT_BMP_gs$Nitrogen_kg_yr_reduced) 
 fTotal_TSS_Pathways = sum(BATT_BMP_gs$TSS_kg_yr_reduced) 
  
 # Estimate total nutrient and sediment loads to the lake (g/m2/day) 
 fPLOAD_TOTAL_GS = fP_CONC_WA * (fQIN_HYDROLAKES_gs/1000) 
 fNLOAD_TOTAL_GS = fN_CONC_WA * (fQIN_HYDROLAKES_gs/1000) 
 fTLOAD_TOTAL_GS = fT_CONC_WA * (fQIN_HYDROLAKES_gs/1000) 
  
 } 
  
 ##BMP gravel wetland 
 # Select relevant columns including land cover type, area, nutrient 
loads, and runoff 
 BATT_BMP_gw <- 
BATT[,c("BATT_Landcover","Corine_Landcover","Type_of_LC", 
"Phosphorous_kg_yr","Nitrogen_kg_yr","TSS_kg_yr", "Total_Area_km2", 
"Phosphorous_kg_km2_yr","Nitrogen_kg_km2_yr","TSS_kg_km2_yr", 
"Direct_surface_runoff","geometry")] 
 #"geometry", 
 BATT_BMP_gw = st_make_valid(BATT_BMP_gw) 
 BATT_BMP_gw = st_transform(BATT_BMP_gw, crs=st_crs(shapeCORINE)) 
  
 # Query OpenStreetMap (OSM) data for pathway-related features within 
the study area 
 ##note: use same bbox as OSM query grass swale 
 buildings <- opq(bbox = c(bbox["xmin"], bbox["ymin"], bbox["xmax"], 
bbox["ymax"])) %>% 
 add_osm_feature( 
 key = 'building', 
 value = 
c('residential','apartments','terrace','house','detached','annexe','hot
el','semidetached_house','commercial','industrial','office','retail','s
upermarket','warehouse','college','government','university') 
 ) %>% 
 osmdata_sf() 
  
 if (is.null(buildings$osm_polygons) || nrow(buildings$osm_polygons) == 
0) { 
 # No buildings found -> GW values equal to total values 
 fPLOAD_TOTAL_GW <- fPLOAD_TOTAL 
 fNLOAD_TOTAL_GW <- fNLOAD_TOTAL 
 fTLOAD_TOTAL_GW <- fTLOAD_TOTAL 
 BATT_BMP_gw$Runoff_reduced <- BATT$Direct_surface_runoff 
 } else { 
  
  
 # Transform building polygons to match CRS of reference layer and find 
spatial intersections with BMP areas 
 buildings$osm_polygons <- st_transform(buildings$osm_polygons , crs = 
st_crs(shapeCORINE)) 
  
 Buildings_intersect <- st_intersection(BATT_BMP_gw, 
buildings$osm_polygons ) 
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 #Filter for right land use 
 Landcover_list_buildings <- list("High Density Residential","Middle 
Density Residential","Low Density Residential (single family)", 
"Commercial","Industrial") 
 filtered<- Buildings_intersect %>% 
 filter(BATT_Landcover %in% Landcover_list_buildings & Type_of_LC == 
"I") 
  
 #Get longest side of polygon (m) 
 filtered$Longest_side <- lapply(filtered$geometry, function(geom) { 
 # Convert the polygon to lines (boundary) 
 boundary <- st_boundary(geom) 
  
 # Extract the coordinates of the boundary (edges of the polygon) 
 coords <- st_coordinates(boundary) 
  
 # Calculate the Euclidean distance between consecutive points 
 side_lengths <- sqrt(diff(coords[, 1])^2 + diff(coords[, 2])^2) 
  
 return(max(side_lengths)) 
 }) 
  
  
 # Calculate storage volume for Gravel Wetlands (DSV_storage) based on 
dimensions and porosity 
 ##0.4 is the porosity 
 filtered$DSV_storage <- sapply(filtered$Longest_side, 
function(longest_side) { 
 # DSV formula for each Longest_side 
 return((0.5 * longest_side * 0.1) + (0.5 * longest_side * 0.1) + (0.5 
* longest_side * 0.1 * 0.4)) 
 }) 
  
 #Wetland area 
 filtered$Green_area <- sapply(filtered$Longest_side, 
function(longest_side) { 
 # DSV formula for each Longest_side 
 return(0.5 * longest_side ) 
 }) 
 Green_area$Wadi_total_area_m2 = sum(unlist(filtered$Green_area)) 
  
  
 # Calculate the total length of all Longest_side values 
 sumLength = sum(unlist(filtered$Longest_side)) 
  
 # Calculate DSV capacity  
 BATT_BMP_gw$DSV_capacity = ifelse(BATT_BMP_gw$BATT_Landcover %in% 
filtered$BATT_Landcover,(sum(filtered$DSV_storage)*1000)/sum(sumLength*
0.5), NA) 
  
 #Calculate reduced surface runoff due to green infrastructure 
 BATT_BMP_gw <- BATT_BMP_gw %>% 
 mutate(Runoff_reduced = 
ifelse(!is.na(DSV_capacity),(Direct_surface_runoff-
DSV_capacity),Direct_surface_runoff)) 
  
 # Calculate the ratio between contributing land area and lake area 
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 BATT_BMP_gw$ratio <- BATT_BMP_gw$Total_Area_km2/pLAKE$Lake_area 
  
 # Adjust surface runoff based on reduced runoff and land-to-lake ratio 
 BATT_BMP_gw$Surface_runoff_area <- BATT_BMP_gw$Runoff_reduced * 
BATT_BMP_gw$ratio 
  
 # Calculate the fraction of runoff that remains 
 BATT_BMP_gw$runoff_reduction_fraction = 
BATT_BMP_gw$Runoff_reduced/BATT_BMP_gw$Direct_surface_runoff 
  
 # Estimate the adjusted total inflow (Qin) to the lake  
 fQIN_HYDROLAKES_gw = 
weighted.mean(BATT_BMP_gw$runoff_reduction_fraction* fQIN_HYDROLAKES, 
BATT_BMP_gw$Total_Area_km2 , na.rm = TRUE ) 
  
 # Estimate total water storage capacity of the gravel wetlands (liters 
per mÂ²) 
 Green_area$Wadi_storage_L_m2 = sum(BATT_BMP_gw$DSV_capacity, na.rm = 
TRUE) 
  
  
 ##Nutrient reduction 
 #Sum area per landcover per building 
 filtered$Building_area <- st_area(filtered$geometry) 
 fTotal_A_building = sum(filtered$Building_area)/1000000 #km2 
  
 #Calculate reduced nutrient 
 BATT_BMP_gw$Perc_Area = ifelse(BATT_BMP_gw$BATT_Landcover %in% 
filtered$BATT_Landcover, 100/BATT_BMP_gw$Total_Area_km2 * 
fTotal_A_building, NA) 
  
 # Recalculate annual loads of phosphorus, nitrogen, and TSS based on 
the treated area (Perc_Area), applying reduction factors to the treated 
portion while keeping untreated loads 
 #Phosphorous 
 BATT_BMP_gw <- BATT_BMP_gw %>% 
 mutate(Phosphorous_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(((Phosphorous_kg_yr/100*Perc_Area)*0.34)+(Pho
sphorous_kg_yr/100*(100-Perc_Area))),Phosphorous_kg_yr)) 
 #Nitrogen 
 BATT_BMP_gw <- BATT_BMP_gw %>% 
 mutate(Nitrogen_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(((Nitrogen_kg_yr/100*Perc_Area)*0.21)+(Nitrog
en_kg_yr/100*(100-Perc_Area))),Nitrogen_kg_yr)) 
  
 #TSS 
 BATT_BMP_gw <- BATT_BMP_gw %>% 
 mutate(TSS_kg_yr_reduced = 
ifelse(!is.na(Perc_Area),(((TSS_kg_yr/100*Perc_Area)*0.01)+(TSS_kg_yr/1
00*(100-Perc_Area))),TSS_kg_yr)) 
  
  
  
 #calculate concentrations of runoff according to BATT 
 ##Phosphorous 
 BATT_BMP_gw$Phosphorous_g_m2_day = 
(BATT_BMP_gw$Phosphorous_kg_yr_reduced*1000/365)/(pLAKE$Lake_area*10000
00) 
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 BATT_BMP_gw$Phosphorous_mg_L = (BATT_BMP_gw$Phosphorous_g_m2_day / 
(BATT_BMP_gw$Runoff_reduced/365))*1000 
  
 ##Nitrogen 
 BATT_BMP_gw$Nitrogen_g_m2_day = 
(BATT_BMP_gw$Nitrogen_kg_yr_reduced*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT_BMP_gw$Nitrogen_mg_L = (BATT_BMP_gw$Nitrogen_g_m2_day / 
(BATT_BMP_gw$Runoff_reduced/365))*1000 
  
 ##TSS 
 BATT_BMP_gw$TSS_g_m2_day = 
(BATT_BMP_gw$TSS_kg_yr*1000/365)/(pLAKE$Lake_area*1000000) 
 BATT_BMP_gw$TSS_mg_L = (BATT_BMP_gw$TSS_kg_yr_reduced / 
(BATT_BMP_gw$Runoff_reduced/365))*1000 
  
 #weighted average concentration based on area 
 library(stats) 
 fP_CONC_WA_GW= weighted.mean( BATT_BMP_gw$Phosphorous_mg_L, 
BATT_BMP_gw$Total_Area_km2, na.rm = TRUE ) 
 fN_CONC_WA_GW= weighted.mean( BATT_BMP_gw$Nitrogen_mg_L, 
BATT_BMP_gw$Total_Area_km2, na.rm = TRUE ) 
 fT_CONC_WA_GW= weighted.mean( BATT_BMP_gw$TSS_mg_L, 
BATT_BMP_gw$Total_Area_km2, na.rm = TRUE ) 
  
  
 #Total 
 fTotal_Phosphorous_Buildings = 
sum(BATT_BMP_gw$Phosphorous_kg_yr_reduced) 
 fTotal_Nitrogen_Buildings = sum(BATT_BMP_gw$Nitrogen_kg_yr_reduced) 
 fTotal_TSS_Buildings = sum(BATT_BMP_gw$TSS_kg_yr_reduced) 
  
 # Estimate total nutrient and sediment loads to the lake (g/m2/day) 
 fPLOAD_TOTAL_GW = fP_CONC_WA * (fQIN_HYDROLAKES_gw/1000) 
 fNLOAD_TOTAL_GW = fN_CONC_WA * (fQIN_HYDROLAKES_gw/1000) 
 fTLOAD_TOTAL_GW = fT_CONC_WA * (fQIN_HYDROLAKES_gw/1000) 
  
 } 
  
 #calculate temperature based on hydrolakes monthly temperatures 
  
 ##note: we run two years of water temperature to get rid of the 
influence of initial temperatures at T=1 which we do not know 
  
 #Extract monthly average air temperatures from pLAKE 
 vTEMP_AIR = 
c(unlist(pLAKE[,c("tmp_dc_l12")])[1]/10,unlist(pLAKE[,c("tmp_dc_l01","t
mp_dc_l02","tmp_dc_l03","tmp_dc_l04","tmp_dc_l05","tmp_dc_l06","tmp_dc_
l07","tmp_dc_l08","tmp_dc_l09","tmp_dc_l10","tmp_dc_l11","tmp_dc_l12")]
)[c(1:12)]/10,unlist(pLAKE[,c("tmp_dc_l12")])[1]/10) 
  
 #Define the day of year corresponding to temperature measurements 
 vDAYS_TEMP_AIR = c(1,16,45,75,105,136,166,197,228,258,289,319,350,365) 
  
 #Duplicate temperature and day vectors to simulate two consecutive 
years 
 vTEMP_AIR = c(vTEMP_AIR,vTEMP_AIR) 
 vDAYS_TEMP_AIR = c(vDAYS_TEMP_AIR, vDAYS_TEMP_AIR+365) 
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 #Combine days and temperatures into a data frame 
 dfTEMP <- data.frame(day = vDAYS_TEMP_AIR, 
     
    temp = vTEMP_AIR) 
  
 library(dplyr) 
  
 library(zoo) 
  
 #Create a full daily time series for two years 
 dfTEMP_YEAR = data.frame(day = seq(from=1, to=730, by = 1)) %>% 
  
 full_join(dfTEMP, by = "day") %>% 
  
 mutate(approx = na.approx(temp)) 
  
  
 #Constants for temperature model from Tjeukemeer calibration 
 fH_CONS_MOOIJ = 0.0269#0.0165 #h = 0.0083 
  
 fF_CONS_MOOIJ = 0.0100#0.0109 #f = 0.0072 
  
 fG_CONS_MOOIJ = 0.0432#0.0271 #g = 0.0017 
  
 #Initial water temperature value for simulation start (degrees 
Celsius) 
 fTEMP_WATER_INIT = 8.0 
  
 #Initialize empty vector to store water temperature results 
 vTEMP=c() 
  
 for(fTIME in c(1:730)){ 
  
 fTEMP_AIR = as.numeric(dfTEMP_YEAR[fTIME,"approx"]) 
  
 # Get the current day of the simulation 
 fDAY  = dfTEMP_YEAR[fTIME, "day"] 
  
 # For the first timestep, set water temperature to the initial value; 
for subsequent timesteps use the previous water temperature 
 if(fTIME == 1){ 
  
 fTEMP_WATER_TMIN1 = fTEMP_WATER_INIT 
  
 }else{ 
  
 fTEMP_WATER_TMIN1 = fTEMP_WATER 
  
 } 
  
 # Calculate the new water temperature based on previous water 
temperature, air temperature, and seasonal sinusoidal variation 
 fTEMP_WATER  = fTEMP_WATER_TMIN1 +
 fH_CONS_MOOIJ*(fTEMP_AIR-
fTEMP_WATER_TMIN1)+fF_CONS_MOOIJ+fG_CONS_MOOIJ*sin(2*pi*((fDAY-
81)/365.25)) 
  
 vTEMP = c(vTEMP,fTEMP_WATER) 
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 } 
  
  
  
 # Extract the last 365 days from the two-year temperature vector 
 vTEMP_365 <- tail(vTEMP, 365) 
  
 # Convert the extracted temperatures into a 1-row matrix 
 Temp_matrix <- matrix(vTEMP_365, nrow = 1, ncol = 365) 
  
 # Assign column names to the matrix representing each day of the year 
 colnames(Temp_matrix) <- paste0("Tm_Day_", 1:365) 
  
 #Save all elements 
 if(exists("PC_Lake")==TRUE){ 
 PC_Lake <- rbind.data.frame(PC_Lake, data.frame( 
 LakeID = pLAKE$Hylak_id, 
 Runoff = (sum(BATT$Direct_surface_runoff, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
 LakeDepth = pLAKE$Depth_avg, 
 LakeArea = pLAKE$Lake_area, 
 Latitude = pLAKE$Pour_lat, 
 Phosphorous = fPLOAD_TOTAL, 
 Nitrogen = fNLOAD_TOTAL,  
 TSS = fTLOAD_TOTAL,  
 Runoff_gs = (sum(BATT_BMP_gs$Runoff_reduced, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
 Phosphorous_gs = fPLOAD_TOTAL_GS,  
 Nitrogen_gs = fNLOAD_TOTAL_GS, 
 TSS_gs = fTLOAD_TOTAL_GS, 
 Runoff_gw = (sum(BATT_BMP_gw$Runoff_reduced, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
 Phosphorous_gw = fPLOAD_TOTAL_GW,  
 Nitrogen_gw = fNLOAD_TOTAL_GW,  
 TSS_gw = fTLOAD_TOTAL_GW,  
 Clay_fraction = pLAKE$cly_pc_vav,  
 Silt_fraction = pLAKE$slt_pc_vav, 
 Sand_fraction = pLAKE$snd_pc_vav, 
 Temp_matrix 
 ))} else{ 
 PC_Lake <- data.frame( 
  LakeID = pLAKE$Hylak_id, 
  Runoff = (sum(BATT$Direct_surface_runoff, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
  LakeDepth = pLAKE$Depth_avg, 
  LakeArea = pLAKE$Lake_area, 
  Latitude = pLAKE$Pour_lat, 
  Phosphorous = fPLOAD_TOTAL,  
  Nitrogen = fNLOAD_TOTAL,  
  TSS = fTLOAD_TOTAL, 
  Runoff_gs = (sum(BATT_BMP_gs$Runoff_reduced, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
  Phosphorous_gs = fPLOAD_TOTAL_GS,  
  Nitrogen_gs = fNLOAD_TOTAL_GS, 
  TSS_gs = fTLOAD_TOTAL_GS, 
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  Runoff_gw = (sum(BATT_BMP_gw$Runoff_reduced, 
na.rm=TRUE)+pLAKE$pre_mm_lyr)/365, 
  Phosphorous_gw = fPLOAD_TOTAL_GW,  
  Nitrogen_gw = fNLOAD_TOTAL_GW,  
  TSS_gw = fTLOAD_TOTAL_GW,  
  Clay_fraction = pLAKE$cly_pc_vav,  
  Silt_fraction = pLAKE$slt_pc_vav, 
  Sand_fraction = pLAKE$snd_pc_vav, 
  Temp_matrix 
 ) 
 } 
 
 } 
}#end for loop over lakes 
 
fwrite(PC_Lake, file.path(file.path(dirShell, "work_cases", 
nameWorkCase, "output"),paste("PCLake_input",".csv",sep=""))) 
 
#write selected lakes to shp 
st_write(shapeLAKES[which(shapeLAKES$Hylak_id %in% PC_Lake$LakeID),], 
file.path(file.path(dirShell, "work_cases", nameWorkCase, 
"output"),paste("NICHES_selected_lakes",".shp",sep=""))) 
 
cbind.data.frame(LakeID=as.data.frame(shapeLAKES[which(shapeLAKES$Hylak
_id %in% 
PC_Lake$LakeID),"Hylak_id"])[1],as.data.frame(st_coordinates(st_centroi
d(shapeLAKES[which(shapeLAKES$Hylak_id %in% PC_Lake$LakeID),])))) 
 
 
#define final output data for PCLake and remove it if it exists 
(overwrite on) 
if (exists("dtOUT_AGG")==TRUE){ 
 rm("dtOUT_AGG") 
} 
 
##CLUSTER VARIANT ON EULER INTEGRATOR##---- 
library(doSNOW) 
library(foreach) 
 
dfCOMBS = expand.grid(lake_no = c(1:nrow(PC_Lake)), scen = c("BAU", 
"NBS_bioswale", "NBS_wadi")) 
 
#make a cluster for calculations 
nTHREADS=11 
snowCLUSTER <- makeCluster(nTHREADS) 
clusterExport(snowCLUSTER, c()) 
registerDoSNOW(snowCLUSTER) 
pb<-txtProgressBar(0,nrow(dfCOMBS),style=3) 
progress<-function(n){ 
 setTxtProgressBar(pb,n) 
} 
opts<-list(progress=progress) 
 
comb <- function(x, ...) { 
 lapply(seq_along(x), 
  function(i) c(x[[i]], lapply(list(...), function(y) y[[i]]))) 
} 
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## 3. Make and adjust cpp files 
## - nRUN_SET determines which forcings are switched on 
PCModelAdjustCPPfiles(dirSHELL = dirShell, 
   nameWORKCASE = nameWorkCase, 
   lDATM = lDATM_SETTINGS, 
   nRUN_SET = 0) 
 
 
## 4. Compile model 
PCModelCompileModelWorkCase(dirSHELL = dirShell, 
    nameWORKCASE = nameWorkCase) 
 
lOUT <-
foreach(i=c(1:nrow(dfCOMBS)),.combine='rbind', .multicombine=TRUE, .pac
kages=c('data.table', 'plyr', "dplyr","stringr"),.export = 
c("dirHome"),.options.snow=opts) %dopar% { 
  
 source(file.path(dirShell, "scripts", "R_system", "functions.R")) ## 
load base functions by Luuk van Gerven (2012-2016) 
 source(file.path(dirShell, "scripts", "R_system", 
"functions_PCLake.R")) 
 nLAKE = dfCOMBS$lake_no[i] 
 sSCEN = dfCOMBS$scen[i] 
 PC_Lake_SEL = PC_Lake[nLAKE,] 
 if(complete.cases(PC_Lake_SEL)==FALSE){ 
  
 }else{ 
 #set sediment based on sand and clay fractions, assuming if it is not 
clay, sand, or clay/sand it has to be peat 
 if(PC_Lake_SEL$Sand_fraction>33 & PC_Lake_SEL$Clay_fraction>33){ 
 sPCLAKE_SED_NAME ="clay_sand" 
 }else if(PC_Lake_SEL$Sand_fraction>33){ 
 sPCLAKE_SED_NAME ="sand" 
 }else if(PC_Lake_SEL$Clay_fraction>33){ 
 sPCLAKE_SED_NAME ="clay" 
 }else{ 
 sPCLAKE_SED_NAME ="peat" 
 } 
  
 ## Optional: change sediment settings 
 lDATM_SETTINGS$params <- 
adjustSedimentParamSettings_inclBank(lDATM_SETTINGS$params, paramset = 
2, sediment_type = sPCLAKE_SED_NAME) 
 #set depth 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cDepthWInit0')] = PC_Lake_SEL$LakeDepth 
 #set fetch 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cFetch')] = sqrt(PC_Lake_SEL$LakeArea*1000000) 
 #set latitude 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cLAT')] = PC_Lake_SEL$Latitude 
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 vTEMP = 
as.vector(unlist(PC_Lake_SEL[,str_detect(colnames(PC_Lake_SEL),"Tm_Day_
")])) 
  
 if(sSCEN == "BAU"){ 
 #adjust forcings 
 lDATM_SETTINGS$forcings$sDefault0$mPLoadEpi$value = 
PC_Lake_SEL$Phosphorous 
 lDATM_SETTINGS$forcings$sDefault0$mNLoadEpi$value 
=PC_Lake_SEL$Nitrogen 
 lDATM_SETTINGS$forcings$sDefault0$mTempEpi$value = 
c(vTEMP[1],rep(vTEMP,30)) 
 lDATM_SETTINGS$forcings$sDefault0$mTempHyp$value = 11.0 
 #Det load is based on the ND ratio of PCLake and the nitrogen load 
into the system, with a maximum value of the total modelled (BATT) TSS 
load 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value 
=min(PC_Lake_SEL$TSS,PC_Lake_SEL$Nitrogen / 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cNDDetIn')]) 
 #IM load is based on the TSS load minus the Detrital load, with a 
minimum of 0. 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadIMEpi$value 
=max(0,PC_Lake_SEL$TSS-
lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value) 
  
 #set QIn 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cQInEpi')] = PC_Lake_SEL$Runoff 
  
 }else if(sSCEN == "NBS_bioswale"){ 
 #adjust forcings 
 lDATM_SETTINGS$forcings$sDefault0$mPLoadEpi$value = 
PC_Lake_SEL$Phosphorous_gs 
 lDATM_SETTINGS$forcings$sDefault0$mNLoadEpi$value 
=PC_Lake_SEL$Nitrogen_gs 
 lDATM_SETTINGS$forcings$sDefault0$mTempEpi$value = 
c(vTEMP[1],rep(vTEMP,30)) 
 lDATM_SETTINGS$forcings$sDefault0$mTempHyp$value = 11.0 
 #Det load is based on the ND ratio of PCLake and the nitrogen load 
into the system, with a maximum value of the total modelled (BATT) TSS 
load 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value 
=min(PC_Lake_SEL$TSS_gs,PC_Lake_SEL$Nitrogen_gs / 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cNDDetIn')]) 
 #IM load is based on the TSS load minus the Detrital load, with a 
minimum of 0. 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadIMEpi$value 
=max(0,PC_Lake_SEL$TSS_gs-
lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value) 
  
 #set QIn 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cQInEpi')] = PC_Lake_SEL$Runoff_gs 
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 }else if(sSCEN == "NBS_wadi"){ 
 #adjust forcings 
 lDATM_SETTINGS$forcings$sDefault0$mPLoadEpi$value = 
PC_Lake_SEL$Phosphorous_gw 
 lDATM_SETTINGS$forcings$sDefault0$mNLoadEpi$value 
=PC_Lake_SEL$Nitrogen_gw 
 lDATM_SETTINGS$forcings$sDefault0$mTempEpi$value = 
c(vTEMP[1],rep(vTEMP,30)) 
 lDATM_SETTINGS$forcings$sDefault0$mTempHyp$value = 11.0 
 #Det load is based on the ND ratio of PCLake and the nitrogen load 
into the system, with a maximum value of the total modelled (BATT) TSS 
load 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value 
=min(PC_Lake_SEL$TSS_gw,PC_Lake_SEL$Nitrogen_gw / 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cNDDetIn')]) 
 #IM load is based on the TSS load minus the Detrital load, with a 
minimum of 0. 
 lDATM_SETTINGS$forcings$sDefault0$mDLoadIMEpi$value 
=max(0,PC_Lake_SEL$TSS_gw-
lDATM_SETTINGS$forcings$sDefault0$mDLoadDetEpi$value) 
  
 #set QIn 
 
lDATM_SETTINGS$params$sDefault0[which(rownames(lDATM_SETTINGS$params)==
'cQInEpi')] = PC_Lake_SEL$Runoff_gw 
 } 
 ## 5. Initialize model 
 ## - make all initial states according to the run settings 
 InitStates <- PCModelInitializeModel(lDATM = lDATM_SETTINGS, 
      dirSHELL = dirShell, 
      nameWORKCASE = nameWorkCase) 
 ## 6. run one model 
 ## - Error catching on run_state & restart (if run_state = 0 & you use 
restart should you be able to do so?) 
 PCModel_run01 <- PCModelSingleRun(lDATM = lDATM_SETTINGS, 
     nRUN_SET = 0, 
     dfSTATES = InitStates, 
     integrator_method = "euler", 
     dirSHELL = dirShell, 
     nameWORKCASE = nameWorkCase) 
  
 ## - Error catching on run_state & restart (if run_state = 0 & you use 
restart should you be able to do so?) 
 PCModel_run02 <- PCModelSingleRun(lDATM = lDATM_SETTINGS, 
     nRUN_SET = 1, 
     dfSTATES = InitStates, 
     integrator_method = "euler", 
     dirSHELL = dirShell, 
     nameWORKCASE = nameWorkCase) 
 # Define output 
 temp_res <- PCModel_run01 
  
 temp_res$period <- "winter" 
 temp_res[temp_res$time %in% summer_vec, "period"] <- "summer" 
  
 last_year_res = temp_res[c((nrow(temp_res)-365):nrow(temp_res)),] 
 dtOUT_SUM <- last_year_res %>% 
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 group_by(period) %>% 
 summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE))) 
 dtOUT_SUM$initstate="turbid" 
 dtOUT_SUM$scen=sSCEN 
 dtOUT_SUM$LakeID = PC_Lake_SEL$LakeID 
 dtOUT_SUM$bioswale_area = Green_area$Bioswale_total_area_m2 
 dtOUT_SUM$wadi_area = Green_area$Wadi_total_area_m2 
 dtOUT_SUM$Bioswale_storage = Green_area$Bioswale_storage_L_m2 
 dtOUT_SUM$wadi_storage = Green_area$Wadi_storage_L_m2 
  
 if (exists("dtOUT_AGG")==TRUE){ 
 dtOUT_AGG = rbind(dtOUT_AGG,dtOUT_SUM) 
 }else{ 
 dtOUT_AGG = dtOUT_SUM 
 } 
  
 # Define output 
 temp_res <- PCModel_run02 
  
 temp_res$period <- "winter" 
 temp_res[temp_res$time %in% summer_vec, "period"] <- "summer" 
  
 last_year_res2 = temp_res[c((nrow(temp_res)-365):nrow(temp_res)),] 
 dtOUT_SUM2 <- last_year_res2 %>% 
 group_by(period) %>% 
 summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE))) 
 dtOUT_SUM2$initstate="clear" 
 dtOUT_SUM2$scen=sSCEN 
 dtOUT_SUM2$LakeID = PC_Lake_SEL$LakeID 
 dtOUT_SUM2$bioswale_area = Green_area$Bioswale_total_area_m2 
 dtOUT_SUM2$wadi_area = Green_area$Wadi_total_area_m2 
 dtOUT_SUM2$Bioswale_storage = Green_area$Bioswale_storage_L_m2 
 dtOUT_SUM2$wadi_storage = Green_area$Wadi_storage_L_m2 
  
 dtOUT_AGG = rbind(dtOUT_SUM,dtOUT_SUM2) 
  
  
 data.table::fwrite(cbind.data.frame(last_year_res,last_year_res2), 
file = file.path(dirShell, "work_cases", nameWorkCase, 
"output","single_runs", paste0(PC_Lake_SEL$LakeID,"_", sSCEN,".txt"))) 
  
 return(dtOUT_AGG) 
 } 
} 
stopCluster(snowCLUSTER) 
 
fwrite(lOUT, file.path(dirShell, "work_cases", nameWorkCase, "output", 
paste0("NICHES_AVG_all_runs",".csv"))) 
 
 
lOUT = fread(file.path(dirShell, "work_cases", nameWorkCase, "output", 
paste0("NICHES_AVG_all_runs",".csv"))) 
 
##PLOTTING AND ANALYSIS BETWEEN SCENARIOS##---- 
dfPLOT = as.data.frame(lOUT[which(lOUT$period =="summer"),]) 
vVARS_PLOT <- c("oChlaEpi","aDVeg", "oPO4WEpi", "oO2WEpi", 
"oChlaBlueEpi", "rPSeq", "rNSeq", "aESSwimming","aESBird","aESFish" ) 
#"aESIrrigation","aESThatching" -> werken niet 
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#cycle through the different variables 
for(sVAR in vVARS_PLOT){ 
 for(sINIT_STATE in c("clear","turbid")){ 
  
 #sVAR="aDVeg"#debug 
 # sVAR="EKR_MFT"# 
 #declare axis label 
 #sYLABEL = vYLABELS[which(sVAR == unique(dfPLOT$variable))] 
  
  
 #do a permutation based (Fischer's exact test) multiple comparison 
test with false discovery rate correction 
 dtPERM_TEST_OUT=as.data.table(data.frame(matrix(NA,0,3))) 
 colnames(dtPERM_TEST_OUT)=c("scen","total_count","sig_let") 
  
 dfPLOT_SEL=dfPLOT[which(dfPLOT$initstate==sINIT_STATE),] 
 dfPLOT_SEL=dfPLOT_SEL[,c("scen",sVAR)] 
  
 colnames(dfPLOT_SEL)=c('scen', 'values') 
  
 dfPLOT_SEL$scen=as.character(dfPLOT_SEL$scen) 
 dfPERM_TEST_MULT = rcompanion::pairwisePermutationTest(value ~ scen, 
        data = dfPLOT_SEL, 
        method="BH") 
 vPERM_TEST_ADJP = dfPERM_TEST_MULT$p.adjust 
 #remove any NaNs resulting from insufficient sample size with 1 
 vPERM_TEST_ADJP[is.na(vPERM_TEST_ADJP)]=1.0 
  
 names(vPERM_TEST_ADJP)= str_replace(dfPERM_TEST_MULT$Comparison, " = 
0", "") 
 names(vPERM_TEST_ADJP)= str_replace(names(vPERM_TEST_ADJP), " - ", "-
") 
 vPERM_TEST_LET = multcompLetters(vPERM_TEST_ADJP) 
  
 #compute counts per EST 
 dtCOUNT_N <- dfPLOT_SEL %>% group_by(scen) %>% 
 summarise(total_count=n(), .groups = 'drop') 
 #add significance letters to the data table 
 dtCOUNT_N$sig_let = vPERM_TEST_LET$Letters 
 #remove all significances with less then 4 samples as they are 
spurious: 
 dtCOUNT_N$sig_let[dtCOUNT_N$total_count<=3]="" 
 dtPERM_TEST_OUT=rbind(dtPERM_TEST_OUT,dtCOUNT_N) 
  
  
  
 dfPLOT_SEL$scen = factor(dfPLOT_SEL$scen, levels = c("BAU", 
"NBS_bioswale", "NBS_wadi")) 
  
  
 #make the plot 
 pdf(file.path(file.path(dirShell, "work_cases", nameWorkCase, 
"output","plots"),paste("PCLAKENBATT_RDAM_",sVAR,"_",sINIT_STATE,".pdf"
,sep="")),width=8, height=5, pointsize=14, useDingbats=FALSE) 
 print( 
 ggplot(data=dfPLOT_SEL, aes(x=scen, y=values))+ 
 geom_violin(fill="lightgrey", color=NA)+ 
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 geom_text(data = dtPERM_TEST_OUT, aes(label=paste0("n=",total_count, 
"\n", sig_let),x=scen, 
y=max(dfPLOT_SEL$values,na.rm=TRUE)+max(dfPLOT_SEL$values,na.rm=TRUE)*0
.1), position=position_dodge2(0.75), vjust=1.0, size=3) + 
 geom_hline(linetype="dotted", color='black', aes(yintercept=0.0))+ 
 
scale_x_discrete(labels=str_replace_all(as.character(levels(dfPLOT_SEL$
scen)),"_","\n"))+ 
 #ylim(0,2.5)+ 
 #geom_dotplot(binaxis='y', stackdir='center', dotsize=0.1)+ 
 #geom_jitter(shape=16, position=position_jitter(0.2))+ 
 stat_summary(fun.data = median_hilow, fun.args=list(conf.int = .75), 
geom = "pointrange")+ #using a method that shows median and 75% 
quantiles (i.e. acts like a boxpot in terms of info) 
 ylab(sVAR)+ 
 xlab("Scenario")+ 
 theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+ 
 theme_bw() 
 ) 
 dev.off() 
 } 
}  
# else{ # else{ TRUE 
# print("This data frame is empty") 
# } 
#} #Sluiting if statement 2###### 
#} #sluiting if statement 1##### 
#} 
 
# #Write PCLake output to csv file 
# write.csv(PC_Lake, "PC_Lake_output.csv", row.names = FALSE) 
#  
# #Write lake results (oversize watersheds) to csv file 
# lake_results_df <- do.call(rbind, lake_results_list) 
# write.csv(lake_results_df, "lake_results_summary.csv", row.names = 
FALSE) 
 
 
 
 
 
 
 
 
 
 
#2: Create buffer around lake that captures the watershed area---- 
 
 
#3: Cut polygon of buffered lake by polygon of basin and check surface 
area of cut buffered lake polygon--- 
 
#IF surface < watershed: repeat 2 and 3 with larger buffer (+10%) 
 
#IF surface > watershed: repeat 2 and 3 with larger buffer (-10%) 
 
#IF surface = watershed OR within 0.1% of watershed area: save polygon 
as lake watershed 
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#4: extract land cover (CORINE) in watershed buffer 
 
#5: Run BATT without NBS 
 
#6: Run BATT with NBS 
 
#7: Run Temperature model (Mooij et al) 
 
#8: Run PCLake+ four times: clear-no_NBS, clear-NBS, turbid-no_NBS, 
turbid-NBS 
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