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Deliverable summary 
This document provides preliminary results obtained in the context of hydrogeological 
characterization of the two field sites analysed in the project: Cremona and Bologna Aquifer 
systems, located in the Po Plain, Northern Italy. The analysis of available sedimentological 
information allows to identify the main classes of geomaterials (or facies) that constitute the 
geological makeup of each system. The heterogeneous structures of these aquifers are 
modelled by stochastic distributions of facies, conditioned on the basis of the available data. 
For the Cremona site, the aquifer architecture is reconstructed with a sequential indicator 
algorithm. Then, hydraulic conductivity distributions are inferred on the basis of two diverse 
conceptual schemes: (1) Composite Medium and (2) Overlapping Continuum. For both the 
approaches, groundwater flow is simulated. A Global Sensitivity Analysis is performed to 
assess the impact of the uncertainty associated with (a) the spatial distribution of hydraulic 
conductivity, and (b) the conceptual model adopted to describe the system, including 
boundary conditions. For the Bologna site, we compare the performance of two techniques 
for the reconstruction of facies distributions, respectively based on (1) sequential indicator 
and (2) transition probability simulation. For each technique, multiple realizations are 
generated and analyzed within a Monte Carlo framework. The effect of the reconstruction 
method is inferred by comparing key ensemble statistics. In each Monte Carlo realization, 
hydraulic conductivity distribution is calibrated. The results are then examined using formal 
model quality criteria. 
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1. Introduction 

This deliverable provides the preliminary results obtained in the context of 
hydrogeological characterization of the two field sites analysed within the project: the Bologna 
and the Cremona Aquifer systems, representing different but complementary realities. The 
Bologna Aquifer is a key source of water for the metropolitan area of Bologna. The Cremona 
Aquifer is located in the so-called Springs Belt. Natural high-quality water springs are the main 
supply to agriculture and a key environmental driver. The Bologna and Cremona sites are 
archetypal of two distinct realities of alluvial aquifers, and can be considered representative of 
diverse environmental settings of Europe-wide interest.  

The deliverable is structured as follows: Section 2 provides the analysis performed for 
the Cremona site. The methodology applied for aquifer architecture reconstruction is described 
in Section 2.1, the sensitivity analysis in Section 2.2 and the main results we obtained in Section 
2.3. Section 2.4 focuses on parameter calibration while ongoing and future planned activities 
are listed in Section 2.5. The techniques used for the reconstruction of facies distributions for 
the Bologna site are detailed in Section 3, which includes the description of conceptual and 
numerical model (Section 3.1), model calibration (Section 3.2) and ongoing and future planned 
activities (Section 3.3). The characterization of the two field sites is expected to be completed 
at month 30th of the project. 

 

2. Cremona site 

The study area is part of the high-medium Alluvial Po Plain. It lies between the city of 
Bergamo (Northern Italy) and the confluence of the Adda and Serio rivers (see Figure 2.1). The 
planar surface of the investigated domain is about 785 km2 and it contains both agricultural 
(84%) and urban (16%) regions. A key feature of the study area is the occurrence of high-
quality water springs, which are the main supply to agriculture and a key environmental driver. 
The area is part of the so-called “springs belt” located at the transition between the high plain, 
characterized by an upper thickness formed by coarse alluvial deposits within which a mainly 
phreatic aquifer is hosted, and the low plain where the topographic surface becomes less steep 
and clayey sediments with lower hydraulic conductivity become more abundant.  

Natural springs constitute treasures around which local economies thrive, governing 
population fluxes and favouring social prosperity. They form a unique ecosystem with a 
remarkable appeal for tourism and leisure activities. Figure 2.1b displays the main 
hydrogeological features of the area including the location of (i) springs, (ii) meteorological 
stations, (iii) hydrometric level stations and (iv) pumping/monitoring wells, which provide data 
for this study. 

Within the Po plain the groundwater resource is mostly located in the continental and 
marine strata of Plio-Pleistocene age. The quaternary sedimentary sequence is overall 
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regressive and is formed by, from the bottom to the top, basal turbiditic sands and clays, a 
prograding fluvio-deltaic sedimentary wedge, continental sediments (Regione Emilia 
Romagna, ENI-AGIP, 1998; Regione Lombardia, ENI-AGIP, 2002). We reconstruct the 
hydrogeological architecture of the study area on the basis of stratigraphic information 
(http://www.geoportale.regione.lombardia.it/download-dati) and reconstructed hydro-
geological sections (Maione et al., 1991; Beretta et al., 1992; Regione Lombardia, ENI-AGIP, 
2002) (see Figure 2.1b, 2.2 and Annex I). 

Due to the aim of the work and data availability, the investigation considers sediments 
up to 290 m thick (average thickness of 120 m). The aquifer system essentially shows (a) a 
surface, locally semiconfined, portion generally formed by high transmissivity sediments and 
characterized by relatively large flow values and (b) a deeper, semiconfined/confined portion 
characterized by alternation between sediments of various grain sizes and hydraulic 
conductivity.  Recharge is due to infiltration from rainfall, from the northern sector and from 
water used for irrigation. The hydrogeological setting of the area is schematized in Figure 2.2 
which displays a North-South (SECT 1) and an East-West (SECT 2) section. Additional 
hydrogeological cross-sections are reported in Annex I. 

 

 

Figure 2.1. a) Geographical framework of the study area (dashed area) within the Lombardia 
region. b) Location of hydrometric level and meteorological stations, pumping wells, geological 

stratigraphies and springs. 
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The superficial thickness of the aquifer consists of clastic continental deposits mainly 
formed by conglomerate (fluvio-glacial Mindel) in the high plain, fluvio-glacial gravels and 
sands (Riss-Wurm) in the lowlands and within the erosion furrows in the conglomerate, recent 
alluvial gravels and sands deposited by rivers. In the Northern portion of the domain the 
conglomeratic deposit (whose degree of permeability is related to the degree of fracturing) is 
prevalent, while in the Southern portion loose gravel and sand deposits are more abundant. 
Layers of clay (with variable planar/lateral continuity) are intercalated within the aquifer. The 
thickness of the aquifer ranges from 40 to 80 m, along the North-South direction. Then, coarse 
clastic (fractured conglomerates in the Northern portion of the area) sediments and clays 
alternate. Inside the porous and/or fractured layers, there are semi-confined or artesian aquifers. 

 

 

 

Figure 2.2. a) SECT 1 (North-South direction); b) SECT 2 (West-East direction), modified 
from Maione et al., 1991. 
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2.1 Conceptual and Numerical model  

2.1.1 Probabilistic facies reconstruction 

The following major lithostratigraphic units can be recognized in the area of interest: 
gravel and sand locally interrupted by silt and clay lenses; alternation of lithotypes formed by 
gravel, sand, silt and clay; silt and clay deposits with sand inclusions; silt and sand deposits. 
The data available from stratigraphic information and reconstructed lithostratigraphic sections 
are homogenized and divided into nf = 5 facies (or classes/geomaterials) summarized in Table 
2.1. These five classes form the basis for the definition of indexed variables by which we 
describe the distribution of geomaterials in the aquifer. According to the texture of each class 
the hydraulic conductivity values may vary within an interval. Lower and upper bounds of 
these intervals are reported in Table 2.2. 

Based on the described lithologic categorization of the data, we studied the three 
dimensional distribution of facies within the aquifer by means of geostatistical methods. As 
previously indicated, we rely on the identification of nf = 5 classes, i.e., 5 geomaterials, 
identified as Mi (i = 1, 2, ..., 5). We evaluate the variogram of each geomaterial according to 
the following procedure: 

1) We start upon assigning a value of the indicator, I = 1, to samples where material M1 
is observed, while assigning I = 0 to locations where other samples are available. 

2) Three-dimensional indicator variography is then performed. Resulting sample 
variograms are interpreted and modeled by different theoretical variograms 
(Spherical, Gaussian, Exponential, pure Nugget) and key geostatistical parameters 
(sill, range, nugget, anisotropy pattern) are identified for each class. Model quality 
criteria are used to select the best variogram model. 

Steps 1-2 are repeated for each geomaterial. We followed two different methodologies to 
reconstruct the spatial variability of the geomaterial, namely “The Composite Medium 
approach” and “The Overlapping Continuum approach”.  

 
In the Composite Medium approach, each block of the numerical model is formed by a 

geomaterial. The analysis is based on the following steps: 

1) Indicator Kriging of facies 1 is performed (Isaaks and Srivastava, 1990) by assigning 
I = 1, to samples where M1 is observed, while assigning I = 0 to locations where Mi 

with i  1 is detected. The zone occupied by M1 is delimited by the iterative procedure 
proposed by Guadagnini et al. (2004). The authors imposed a threshold corresponding 
to the experimental volumetric percentage of M1 to reconstruct a spatial distribution 
of M1 which is consistent with the observed volumetric fractions. 

2) We reconstruct the region occupied by M2 by repeating step 1 in the sub-domain 
external to the region occupied by M1. This iterative algorithm is repeated removing, 
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at each iteration, data relative to the class for which it has already been estimated the 
related geomaterial spatial distribution until all the cells in the model domain have 
been assigned to a geomaterial.  

3) The conductivity value assigned to each cell of the model domain consists in one 
(constant) value for each facies.  

The Overlapping Continuum approach considers that the system can be modelled as 
many composite media coexisting in space. The idea is that each point in the domain represents 
a finite volume in which each one of the (five) geomaterials can coexist in different volumetric 
percentage. Indicator Kriging of facies i (with i = 1,…, 5) is performed. Kriged values of the 
indicator coincide with the estimated probability (or volumetric percentage) of finding Mi 
within each block of the domain. The hydraulic conductivity value of a grid cell (or block), Kj, 
is then calculated as a weighted mean of the conductivities of materials occurring in the block, 
ki. We tested the following two weighted averages: 

(1) Arithmetic mean (AM)      ,
1

fn

j i j i
i

K I k


   

(2) Geometric mean (GM)      ,

1

f

i j

n
I

j i
i

K k


                    with j= 1, 2,...,Nj 

,i jI  and Nj being, respectively, the estimated volumetric fraction of geomaterial i within block 

j (with ,
1

1
fn

i j
i

I


 ) and the number of grid blocks. As mentioned above, we assumed that each 

geomaterial is associated with a constant hydraulic conductivity. 
 

Class Geological material Volumetric percentage (%) 

1 Clay and silt 36.77 

2 Fine and silty sand 4.73 

3 Gravel, sand and gravel 32.92 

4 Compact conglomerate, sandstone 14.94 

5 Fractured conglomerate 10.64 

Table 2.1. List of geological materials composing the five classes and related volumetric 
percentage. 
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Parameter 
Short 
name 

Description Lower bound Upper bound Unit 

p1 k1 Clay and silt conductivity 10-8 10-5 m/s 

p2 k2 Fine and silty sand conductivity 10-7 10-4 m/s 

p3 k3 
Gravel, sand and gravel 

conductivity 
10-4 10-2 m/s 

p4 k4 
Compact conglomerate 

conductivity 
10-6 10-3 m/s 

p5 k5 
Fractured conglomerate 

conductivity 
10-3 10-1 m/s 

p6 p6 
Total flow rate from Northern 

boundary 
4.83 14.47 m3/s 

p7 p7 River stage 0.0 3.0 m 

Table 2.2. Selected uncertain parameters and associated range of variability. 

 

2.1.2 Groundwater flow model 

We developed a steady state three-dimensional groundwater flow model covering the 
area of interest of size 23 km (East-West direction) × 48 km (North-South direction) × 475 m 

(depth). The system is discretised by 230 × 240 × 95 ( 5.2 million) cells of uniform size 100 
× 200 × 5 m. Inactive cells have been inserted to obtain realistic topography surface of the area 
and of the bottom of the aquifer. The numerical code MODFLOW-2005 (Harbaugh, 2005) is 
used to simulate groundwater flow.  

Recharge terms included in the model comprise infiltration from precipitations, 
irrigational water and percolation from channels in the non-urban zones, aqueduct and sewage 
system losses in the urban region. Withdrawals from the aquifer system are managed by the 
public administration for drinking, industrial and agricultural purposes. The amount of water 
withdrawal related to the diverse existing activities is reported in the Catasto Regionale delle 
Utenze Idriche (http://www.cittametropolitana.mi.it/). A complete and up-to-date record 
reporting the exact location of the complete set of pumping wells is not available. For this 
reason, we assign the water withdrawal within a given municipality to a system of wells located 
at the center of the municipality itself. The screens of these pumping wells are set at a depth of 
60÷80 m, 40÷50 m or 20÷30 m depending on whether they are supplying drinking water for 
the population, industrial or agricultural activities, respectively. Springs are simulated as drains 
and their outflow-rate is proportional to the difference between the hydraulic head and the 
elevation of ground level. 

A Dirichlet boundary condition is imposed to the grid cells located along the Adda and 
Serio rivers (see Figure 2.3). This choice relies on the results of previous studies, showing that 
both rivers have a direct hydraulic connection with the groundwater system. Maione et al. 
(1991) showed how the Adda river drains water from the aquifer along its entire course. The 
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Serio river partially drains the aquifer, while hydraulic equilibrium conditions with the aquifer 
are observed along other parts of the river. A Neumann boundary condition is imposed along 
the Northern boundary of the model (see Figure 2.3). 

 

 

Figure 2.3 Location of monitoring wells and boundary condition of the numerical model.  

 

2.2 Sensitivity analysis  

We considerd a set of N = 7 uncertain parameters (see table 2.2), each one described by 
a uniform probability distribution within a corresponding interval of variability. These 
parameters are collected in a vector p = (p1,…, pN). The parameter space is then defined as 

min max,   Γ p p  where minp  and maxp  indicate the vectors containing respectively lower and 

upper bounds of parameter variability intervals. The output of the groundwater model 

(hydraulic heads) can be expressed as a function of the unknown parameters, i.e.   : .f p Γ    

In our study, selected uncertain parameters are associated with (i) the hydraulic 
conductivity (ki with i =1,…, 5) of the five geomaterials composing the aquifer and the model 
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boundary conditions, i.e. (ii) the total flow rate entering from the Northern boundary (p6) and 
(iii) the river stages, delimiting model at the Western, Eastern and Southern sides (p7). The 
lower and upper bounds of the intervals of variability of the selected uncertain parameters are 
listed in Table 2.2. The choice of the width of the intervals associated with hydraulic 
conductivities (ki, i = 1,…,5) is based on geological features as explained in Section 2.1.1. 

Considering the boundary conditions, Rametta (2008) estimated a total incoming flow rate, 6p

, of 9.65 m3/s based on the hydrological balance of the Serio basin, located at the north of the 

study area. In our analyses, we allow p6 to vary amongst 60.5 p  and 61.5 p . Since a 

description of the spatial distribution of p6 is not available, we set the total incoming flow rate 
as uniformly distributed along the boundary. The range of variability of the Dirichlet boundary 
condition (p7) has been defined considering that the river stage may vary between the river 
bottom (0 m) and the mean elevation of the river banks (approximately equal to 3 m). This 
datum has been derived from topographic sections of the Adda and Serio rivers (available from 
Autorità di bacino del fiume Po).  

We applied the two global sensitivity analyses briefly described in the following to assess 
the impact of the uncertainty associated with the selected seven model parameters on the 
hydraulic head monitored at the 39 observation wells depicted in Figure 2.3. Note that each 
well is identified by a numeric code (ID) which is associated with a number that increases from 
North to South to facilitate the interpretation of the results. 

 

2.2.1 Morris Indices 

The methodology proposed by Morris (1991) and Campolongo et al. (2007) derives 
measures of global sensitivity by averaging a set of local derivatives, or elementary effect, 
evaluated at r selected trajectories of sample points in the parameter space Γ. For a given 
model, each trajectory requires N+1 model runs in which each parameter is perturbed (one at a 
time) by a fixed increment Δ. The elementary effect of the i-th parameter (EEi), for a selected 
trajectory j, is defined as  

     1,...., ,...,i N
i

f p p p f
EE j

  


p

Δ
 (2.1) 

where f( ) is the model output. Each trajectory yields one estimate of the elementary effect for 
each parameter. We evaluate the EEi for r trajectories to avoid the dependence of the results on 
the location of the initial point in the parameter space (Campolongo et al. 2007). An estimate 

of total effect the i-th parameter can be computed from the absolute mean, *
i , of the EEi over 

the set of r trajectories 

 *

1

1 r

i i
j

EE j
r




   (2.2) 
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If *  is substantially different from zero, it indicates that the i-th parameter significantly 

affects the model output. The advantage of this method relies on the low computational cost 
associated with the evaluation of sensitivity indices. It requires a number of forward model 

simulations equal to  1r N  . In our application we obtain stable results with r = 30 (i.e. 240 

model runs). As drawback, the index *  does not give information about the joint effect of 

parameter uncertainty, as quantified by the Sobol indices described in the next section. 

 

2.2.2 Sobol Indices 

Sobol sensitivity analysis is a variance-based method which allows to quantify the 
uncertainty in the model output due to uncertain parameters and to their interactions (Sobol, 
1993, 2001; Sudret, 2007; Formaggia et al. 2013; Dell’Oca et al. 2017). It can be shown that if 
the model response f(p) belongs to the space of square-integrable functions, then the following 
expansion holds 

       0 1,..., 1
1 1

, ,...,
N

i i ij i j N N
i i j N

f f f p f p p f p p
   

     p   (2.3) 

where f0 is the expected value of f(p) and     
1,..., 1,..., 1,...,

si i sf i i N  are orthogonal 

polynomials with respect to a probability measure. The total variance, V[f], of f(p) can then be 
written as 

  1,...,
1 1

N

i ij N
i i j N

V f V V V
   

       (2.4) 

Here, iV  is the contribution to the variance of the model output due to the effect of the 

uncertain input parameter pi when considered individually, and 
1,..., si iV  is due to interaction of 

the uncertain model parameters belonging to the subset  
1
,...,

si ip p . The Sobol indices are 

then defined as 

1

1

,...,
,...,

s

s

i i
i i

V
S

V
  (2.5) 

Sobol indices (2.5) express the contribution of a subset of model parameters  
1
,...,

si ip p  to the 

total model variance. One can define 2N1 Sobol indices from (2.5) such as 

, ,...,
1 1

1
N

i ij i j n
i i j N

S S S
   

       (2.6) 
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The principal Sobol indices iS  in (2.6) describe the influence of the model parameters i 

when considered individually and the mixed terms ,i jS  account for possible interactions 

between parameters i and j. Total Sobol indices for the i-th parameter are then defined as  

1T i
i

V
S

V
    (2.7) 

where iV  indicates the fraction of the total variance attributed to all parameters except the i-

th.  
Sobol indices are evaluated numerically in Section 2.3 through the use of a model-order-

reduction technique based on the generalized Polynomial Chaos Expansion (gPCE) approach. 
This technique consists of approximating f(p) by a linear combination of multivariate Legendre 
polynomials (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maitre and Knio, 
2010). The computational cost of this sensitivity analysis strongly depends on the order of the 
gPCE. In this work we obtained stable results with a gPCE of order 4 which requires 2437 
model runs. The selection of this gPCE has been performed comparing the results obtained 
employing gPCE of diverse orders (details not shown). 

The evaluation of Sobol indices is computationally more demanding than the Morris 
screening methodology. However, key advantages of this methodology are: (i) it allows to 
compute the effect of the interaction amongst uncertain parameters, (ii) the series of 
polynomials theoretically converges to exact results as more and more terms are included and 
(iii) the reduced model that we obtain together with the Sobol indices evaluation can be 
effectively used in the context of model calibration, reducing significantly the computational 
cost associated with model inversion (see e.g. Laloy et al., 2013; Colombo et al., 2017). 

 

2.3 Results and discussion 

2.3.1 Probabilistic facies reconstruction 

Volumetric percentages of the five facies associated with the model domain are listed in 
Table 2.1. Figure 2.4 depicts a planar view of the model with boundary conditions and 
illustrates the distribution of the five facies obtained using the Composite Medium approach 
along three horizontal cross-sections, corresponding to elevation 120 m, 70 m and -30 m a.s.l. 
One longitudinal (North-South) and two a transverse (East-West) sections of the model are 
shown in Figure 2.5 with the corresponding patterns of geomaterials and boundary conditions. 
The reconstructed geomaterial distribution is in good agreement with available geological cross 
sections of the area (see Figure 2.2 and Annex I). The estimated volumetric percentage of each 
geological facies obtained considering the Overlapping Continuum conceptualization is 
depicted in Figure 2.6 for a selected layer of the model corresponding to the elevation of 70 m 
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a.s.l. In this framework the volumetric fraction of a lithofacies can also be interpreted as its 
probability of occurrence at a given location. 

Figure 2.7 displays the average distribution of geomaterials along a longitudinal (South-
North) cross section computed using the Composite Medium and the Overlapping Continuum 
methodology. Globally, the two approaches lead to similar results. According to the geology 
of the area, compact and fractured conglomerates (Classes 4 and 5) are mostly detected in the 
Northern part of the model where fine and silty sand (Class 2) is absent. Clay and silt and gravel 
(Classes 1 and 3) can be found along the entire longitudinal cross section, being these 
geomaterials associated with the higher volumetric percentage. As expected, the Overlapping 
Continuum approach leads to a smoother spatial variation of the percentage of geomaterials 
with respect to the Composite Medium methodology. 

 

 

Figure 2.4. Planar view of the model domain. a) Boundary conditions; distribution of the facies in the 
Composite Medium approach within b) layer 30 (i.e., 120 m a.s.l), c) layer 40 (i.e., 70 m a.s.l.) and d) 

layer 60 (i.e., -30 m a.s.l). 

 

Figure 2.8 displays the log-conductivity field, Y = lnK, reconstructed along a longitudinal 
cross section and using the three model conceptualizations. The conductivity of the five 
geomaterials have been set at values consistent with their geological texture, corresponding to 
the midpoint of their intervals of variability listed in Table 2.2 (i.e. k1 = 10-7 m/s, k2 = 10-6 m/s, 
k3 = 10-3 m/s, k4 = 10-5 m/s and k5 = 10-2 m/s). In the Composite Medium approach (Figure 2.8a) 
each cell of the model is associated with a constant hydraulic conductivity value. This leads to 
a heterogeneous medium where blocks characterized by different conductivity values can be 
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close (or touch). A smoother K distribution is reconstructed using the Overlapping Continuum 
models. We also observe that the Overlapping Continuum model computed with the arithmetic 
mean (AM, Figure 2.8b) leads to a Y field characterized by higher values then its counterpart 
computed with the geometric mean (GM, Figure 2.8c). Moreover, the spatial heterogeneity of 
Y described by AM is significantly smaller than the one reconstructed with GM. The mean of 

Y field, Y , and its standard deviation, Y , are respectively equal to (i) -6.7 and 1.20 for AM 

and (ii) -10.5 and 1.63 for GM. 
Sample pdfs of Y are depicted in Figures 2.9a, b for AM and in Figures 2.9c,d for GM 

together with pdfs associated with the Composite Medium conceptualization. Gaussian pdfs 

with Y and Y  equal to that of the samples are also shown. Figure 2.9 highlights that the 

sample pdf of Y for GM presents a slightly bimodal behavior with tails that decay nearly 
following a Gaussian pdf. When considering AM, sample pdf of Y is clearly non Gaussian, and 
it displays a long left tail. 

 

 

Figure 2.5. Composite Medium approach. Facies distribution in Section a) A’A’; b) B’B’ and c) C’C’. 
Boundary conditions are also reported. The location of the vertical cross-sections is displayed in 

Figure 2.4. Vertical exaggeration factor of 50. 
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Figure 2.6. Overlapping Continuum approach. Volumetric fraction of facies a) 1; b) 2; c) 3; d) 
4; and e) 5 within layer 40 (i.e., 70 m a.s.l.). 

 
Figure 2.7. Average distribution of geomaterial volumetric fractions along South- North direction for 

Composite Medium and Overlapping Continuum approach and facies a) 1; b) 2; c) 3; d) and e) 5. 
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Figure 2.8. Spatial distribution of Y = lnK along Section A’A’ (see Figure 2.4a) for a) Composite 
Medium, b) AM and c) GM. Vertical exaggeration factor of 50. 
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Figure 2.9. Sample pdfs of Y = lnKj for AM (a, b) and GM (c, d) on arithmetic (a, c) and semi 
logarithmic (b, d) scales. Also shown are Gaussian pdfs with mean and variance equal to that of the 

samples (dashed curves) and the pdfs Y associated with the Composite Medium model. 

 

2.3.2 Sensitivity analysis 
Figure 2.10 depicts the average hydraulic head, normalized by the corresponding 

observed head, evaluated at the 39 observation wells (see Figure 2.3 for well locations and ID 
number) using the three model conceptualizations. These plots overlap results respectively 
associated with the Morris screening methodology (blue squares, corresponding to normalized 
hydraulic heads averaged over 240 model runs) and with the Sobol indices evaluations (red 
dots, corresponding to normalized hydraulic heads averaged over 2437 model runs). 
Uncertainty intervals equal to ± 2 standard deviations around the mean are also shown with 
blue and red dashed lines for the Morris and Sobol indices, respectively. The width of 
uncertainty intervals decreases with increasing the number of model evaluations. Well s located 
in the Northern area are generally associated with a larger uncertainty, respect to observation 
in the Southern zone.  
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Figure 2.11 depicts the sensitivity indices associated with the 7 uncertain parameters for 

Composite Medium approach. We plot (i) the dimensional Morris measure *
i  (Figure 2.11a), 

with i = 1,…, N = 7; (ii) the normalized Morris measure (Figure 2.11b) defined as 

* * *

1

N

i i i
i

  


   and (iii) the total Sobol indices T
iS  (Figure 2.11c). Corresponding results for 

AM and GM are reported in Figure 2.12 and 2.13, respectively. 
For all the conceptual models analyzed, the Northern area is the one that is most sensitive 

to the variability of the uncertain parameters (Figures 2.11a, 2.12a and 2.13a). In this area GM 
conceptualization is characterized by higher values of hydraulic heads and higher variation due 
to uncertainty of input parameters. This result is associated with the combined effect of the 
model boundary conditions and to the fact that GM is characterized by low Y values, with 
respect to the other schemes (see Figure 2.8).  

Both Morris and Sobol indices identify consistent ranking of model parameters (see 
Figures 2.11b,c, 2.12b,c and 2.13b,c). The Morris indices, based on a relatively small number 
of model runs, are able to isolate the most sensitive parameters. Sobol indices also allow 
identifying the impact of the interaction among parameters on the  total output variance. This 

effect is relevant when 
1

1
N

T
i

i

S


 . In our case the latter condition is satisfied only at a very 

limited number of points for all the considered model conceptualizations (Figure 2.11c, 2.12c 
and 2.13c) showing that the output variance is mainly influenced by the effect of the parameters 
by themselves and it is weakly affected by parameter interactions.  

Focusing on the effect of geomaterial conductivities we observe that model outcomes are 
not significantly affected by the hydraulic conductivity of sand (k2) and compact conglomerate 
(k4) for all the considered observation points. This result is consistent with the observation that 
these geomaterials constitute respectively 5% and 15 % of the system. Conductivities of gravel 
(k3) and fractured conglomerate (k5) affect the distributions of hydraulic heads in the aquifer 
for all the considered conceptual models and most of the observation points. This results can 
be related to the fact that these two geomaterials are associated with the higher values of 
hydraulic conductivities. The effect of k5 is negligible only for the Composite Medium model 
at some Southern location of the aquifer where this material is (practically) absent (see Figure 
2.4c and Annex I). The uncertainty associated with clay conductivity (k1) significantly affect 
model outcomes for Composite Medium and GM (Figures 2.11 and 2.13) while does not affect 
hydraulic head distribution in AM (Figure 2.12) despite its high volumetric percentage (37%). 
This result can be interpreted considering that the arithmetic mean tends to reduce the 
importance of the low conductivity facies (e.g. clay) while enhance the effect of high 
permeability textures. This effect can be appreciated also by looking at the log conductivity 
fields displayed in Figure 2.8b.  
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Considering the boundary conditions note that the parameter associated with Neumann 
boundary conditions, the Northern total flow rate (p6), affects only the Northern sector of the 
aquifer system for Composite Medium and AM approaches. The uncertainty associated with 
this boundary condition produces higher variations of hydraulic heads within GM. This result 
is associated with the combined effect of the boundary conditions applied to the model and to 
the fact that the latter approach is characterized by low Y values. The River-stage boundary 
conditions, p7, affects the hydraulic head significantly (in particular in the Southern sector of 
the study area) for Composite Medium and AM. Note that for the Composite Medium case, at 
some observation points very close to the rivers (e.g. 31, 34, 37 and 38) Morris indices tend to 
underestimate the effect of this boundary conditions. On the other hand, p7 does not affect 
model outcomes significantly for GM, except at some locations very close to the rivers (e.g. 
points 24, 34, 37 and 38).  

 

 

Figure 2.10. Average hydraulic head, normalized by the corresponding observed value, obtained from 
model runs performed for computing Morris (blue squares) and Sobol (red dots) indices at the 39 
observation wells for a) Composite Medium, b) AM and c) GM. Uncertainty intervals equal to ± 2 

standard deviations around the mean are also shown (dashed curves). 
 

A global comparison of Morris and total Sobol sensitivity indices, for the three model 
conceptualizations are presented in Figure 2.14a and b, respectively where we depict the 

average value of scaled Morris, *
i , and total Sobol indices, T

iS , over the 39 hydraulic 

head observation points. Error bars in the figure represent ± 1 standard deviation around mean 
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values. Considering the average response of the three models we note that the two sensitivity 
measures display consistent trends. When looking at this mean behavior, outcomes of all three 
model conceptualizations are not significantly affected by the uncertainty of fine sand and 
compact conglomerate conductivities (k2 and k4). Additionally, the response of AM is also not 
affected by the variability of clay conductivity (k1). Dirichlet and Neumann boundary 
conditions, hydraulic conductivities k3 and k5 related respectively to gravel and fractured 
conglomerates affect the computed hydraulic head distribution for all the conceptual models 
analyzed. 

 

 

Figure 2.11. Composite Medium approach. a) Morris index *
i ; b) Morris scaled index *

i  and c) 

total Sobol index T
iS  for 39 observation wells. 
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Figure 2.12. Overlapping Continuum approach, AM. a) Morris index *
i ; b) Morris scaled index *

i  

and c) total Sobol index T
iS  for 39 observation wells. 

 

 

Figure 2.13. Overlapping Continuum approach, GM. a) Morris index *
i ; b) Morris scaled index *

i  

and c) total Sobol index T
iS  for 39 observation wells. 
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Figure 2.14 Sensitivity indices, averaged over the 39 observation wells. a) Average scaled Morris 

Index *
i  and b) average total Sobol index T

iS . Error bars represent  1 standard deviation 

around mean values. 

 

2.4 Model Calibration 

2.4.1 Maximum Likelihood Approach  

Let N be the number of unknown model parameters and Nh be the number of hydraulic 

head measurements. We introduce the vector of unknown model parameters,  1 2, ,..., Np p pp

, the vector of hydraulic head measurements, 
* * * *

1 2, ,..., Nh
h h h   h , the vector of model 

predictions, 1 2
ˆ ˆ ˆˆ , ,..., Nh
h h h   h , and the covariance matrix of the head measurement errors, Ch. 

As commonly assumed (e.g., Carrera and Neuman, 1986), we consider errors *
ih  to be 

uncorrelated. This renders Ch diagonal with the nonzero terms equal to the head observation 

error variance, 2
h . 

The Maximum Likelihood (ML) estimate, p̂ , of p is obtained by minimizing the negative 

log likelihood criterion (e.g., Carrera and Neumann, 1986; Bentley, 1993; Poeter and Hill, 
1997; Tarantola, 2005; Carrera et al., 2005; Chavent, 2010) 

2
ln | | ln(2 )

Nh
i

h h
i h

J
NLL N 


   C   (2.8) 

with respect to p. In Eq. (2.8), Ji is defined as the squared difference between measured and 
predicted hydraulic heads 
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 2
* ˆ

i i iJ h h   . (2.9) 

Considering 2
h as a constant minimizing NLL (for fixed Nh) is equivalent to the 

minimization of the least square criterion 

 2
*

1

ˆ
Nh

i i
i

J h h


   (2.10) 

Minimization of Eq. (2.10) is performed using the iterative Levenberg–Marquardt 
algorithm implemented in the public domain code PEST (Doerthy, 2002). Then, the ML 

estimate of 2
h  is given by 

2 minˆh
h

J

N
    (2.11) 

where Jmin is the minimum of J.  
The sensitivity analysis performed in the previous section allows to identify for each model 

conceptualization the parameters which mainly affect the model outcomes i.e. hydraulic heads. 
Most influent parameter for each conceptualization have been calibrated using the procedure 
explained above. According to the results of the sensitivity analysis we calibrate parameters k1, 
k3 and k5 for Composite Medium and GM models and k3, k5 for AM. For each conceptual model, 
insensitive parameters and boundary conditions are fixed to values consistent with the 
geological features of the corresponding classes, as reported in Table 2.5. As calibration data, 
we consider yearly-averaged hydraulic heads collected at each observation well (i.e., Nh = 39) 
during year 2015 (see Figure 2.3). The observation wells have been included in the numerical 
model and the measured hydraulic head is associated with the depth of the well screen. When 
the latter information is not available the piezometric level is associated with the maximum 
depth of the well.  

 

2.4.2 Model Identification Criteria 

When a set of NM available alternative interpretive models is available, one can use various 
criteria to (a) rank these models, and/or (b) weigh predictions generated by multiple models 
(e.g., Akaike, 1974; Schwartz, 1978; Kashyap, 1982; Hurvich and Tsai, 1989; Neuman, 2003; 
Neuman and Wierenga, 2003; Ye et al., 2004, 2008, Neuman et al., 2011) 

2 PAIC NLL N  , (2.12) 

 2 1
2

1
P P

c P
h P

N N
AIC NLL N

N N


  

 
, (2.13) 

 lnP hBIC NLL N N  , (2.14) 

 ln 2 lnPKIC NLL N    Q . (2.15) 
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Model discrimination criteria allow to discriminate among different competing models 
on the basis of their quality of fit to observations, number of parameters, and quality of the 
available data and parameter estimates. Here, Q is the Cramer-Rao lower-bound approximation 
for the covariance matrix of the parameter estimates. All of these identification criteria support 
the principle of parsimony, in the sense that when everything else is equal, one should prefer 
adoption of the model with the smallest number of parameters. KIC balances parsimony with 
the expected information content by means of |Q| and favors the model that is least probable 
(in an average sense) of being incorrect (Ye et al., 2008). On the other hand, Tsai and Li (2008, 
2010) and Li and Tsai (2009) suggest that KIC can potentially favor models with large 
parameter estimation uncertainty following unreliable estimation of Q, potentially leading to 
controversial results. An extensive discussion of these model selection criteria is presented in 
Ye et al. (2008, 2010) and Riva et al. (2011). 

 

2.4.3 Hydraulic conductivity estimates  

In order to investigate the ability of the three different conceptual models to simulate and 
predict the physical behavior of the system, we estimate hydraulic conductivity values by 
means of a ML fit of computed versus measured hydraulic heads adopting the Composite 
Medium, AM and GM models. Dirichlet and Neumann boundary conditions investigated 
during the sensitivity analysis are fixed to three selected constant values representing the lower 
bound, medium behavior and upper bound of their range of variability. The considered sets of 
boundary conditions are listed in Table 2.3.  

 
Parameter short name p6 p7 
Parameter description Total flow rate from 

Northern boundary 
River stage 

BC1 4.83 m3/s 0.0 m 
BC2 12.06 m3/s 1.5 m 
BC3 19.30 m3/s 3.0 m 

Table 2.3. Boundary conditions considered during the inversion procedure. 

 
As indicated in Table 2.4, the generalized least squares criterion, J, converges to a smaller 

value in case of the Composite Medium model and BC2. Model identification criteria tend to 
favour AM with BC3 over all remaining models. We argue that in this case the data information 
content supports a sophisticated scheme of the kind included in the Overlapping Continuum 
model. We note that the arithmetic mean seems to provide a more robust model with respect to 
the GM approach. Our results suggest that, at the considered scale of interest and on the basis 
of available data, sharp geological boundaries, adopted in the Composite Medium 
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methodology, play only a secondary role in the system, while local heterogeneities reproduced 
by the Overlapping Continuum approach have a more pronounced controlling effect.  
 

 
Composite Medium 

Overlapping Continuum 
AM 

Overlapping Continuum 
GM 

BC1 BC2 BC3 BC1 BC2 BC3 BC1 BC2 BC3 
J 1859 1720 1755 1951 1879 1777 1867 3212 1946 

NLL 114.43 114.35 114.36 115.46 115.41 115.35 114.44 114.98 114.49 
AIC 120.43 120.35 120.36 119.46 119.41 119.35 120.44 120.98 120.49 
AICc 121.11 121.04 121.05 119.80 119.74 119.68 121.13 121.66 121.17 

BIC 125.49 125.42 125.43 122.84 122.78 122.72 125.51 126.04 125.55 

KIC 119.93 120.25 119.03 118.42 117.53 117.00 114.93 120.06 120.62 

Table 2.4. Inversion statistic for the three conceptual models and the considered set of boundary 
conditions. Minima related to each conceptual model are in black bold, minima amongst all models 

are in red bold. 

 
Parameter estimates are reported in Table 2.5 for the three conceptual models associated 

with the smaller KIC value, i.e. Composite Medium with BC3, Overlapping Continuum AM 
with BC3 and Overlapping Continuum GM with BC1. The estimation error standard deviation, 
SD, calculated according to the ML methodology, is also reported for the estimated parameters. 
The estimated values are consistent with the geological features of the classes. For all 
conceptual models, the lowest value is associated with the clay, silt and fine sand materials, 
corresponding to Classes 1 and 2, while the largest conductivities are related to gravel material 
and the fractured conglomerate, corresponding to Classes 3 and 5. 

 

 
Composite Medium 

(BC3) 
Overlapping 

Continuum AM (BC3)
Overlapping Continuum 

GM (BC1) 
 k (m/s) SD k (m/s) SD k (m/s) SD 

k1 5.7910-5 4.6110-5 1.00 10-6 - 2.1610-6 1.1010-5 
k2 1.00 10-4 - 1.00 10-4 - 1.00 10-4 - 
k3 9.8710-3 6.7410-3 1.4710-2 2.4510-2 5.7310-2 2.2210-2 
k4 1.00 10-5 - 1.00 10-5 - 1.00 10-5 - 
k5 4.6010-3 2.5610-3 5.4610-3 6.9910-2 6.1510-3 4.0510-1 

Table 2.5: Parameter estimates and related estimation error standard deviation for the best three 
conceptual models according to KIC. 

 
Figure 2.15 depicts simulated versus observed hydraulics heads for the three calibrated 

models.  
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Figure 2.15: Simulated versus observed hydraulic head at monitoring stations. Simulated heads 

have been obtained with the a) Composite Medium scheme and BC3, b) AM with BC3 and c) GM with 

BC1. 

2.5 Ongoing and future planned activities 

We are currently extending the calibrated model to transient conditions. We are also 
planning to further improve the site characterization considering transient meteorological, 
withdrawal, hydrometric and hydraulic head measurements available over the ten-year period 
2006-2015. Due to the high computational cost associated with the transient model, we are 
planning to develop an equivalent two-dimensional system and to solve the transient flow with 
non-conforming finite elements. The model will be coupled with the surface recharge by means 
of the Nash transfer function (Chardigny, 1999; Majdalani and Ackerer, 2011). Parameters 
involved in the diffusivity equation (e.g., conductivity and storativity) as well as the 
computation of groundwater recharge through the Nash model will be estimated via an inverse 
ML approach. Due to the high number of parameters involved, we plan to use the adjoint state 
method (Carrera and Neuman, 1984; Chavent, 1974) to evaluate the gradient of the objective 
function as well as an approximation of the Hessian of the objective function. The latter is 
based on a gradient projection method (BFGS, Byrd et al., 1995). Moreover, an adaptive 
downscaling parameterization (ADP) (Ackerer et al., 2014; Hassane Maina et al., 2017; 
Hassane Maina and Ackerer, 2017) is envisioned to be used.  
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3. Bologna site   

The Bologna aquifer system is located in the lower part of the Po plain (Emilia Romagna 
region, Northern Italy). It includes the alluvial fan of the Reno River, the most important 
hydrographic element within the area. This region is characterized by an intense anthropic 
activity, drawing its water supplies mainly from the underlying aquifer, resulting in the 
formation of a cone of depression around the city of Bologna. The extent of this phenomenon 
can be characterized by the reconstruction of hydraulic head distributions on the basis of 
available measurements of piezometric levels (see, e.g., Section 3.1.2). As reported in 
Deliverable 1.1, the system is composed by three aquifer groups (named A, B and C), the 
former being, in turn, structured into 4 units (A1, A2, A3 and A4). Here, we model the system 
as an upper confined aquifer (formed by A1 and A2) overlying a lower confined aquifer 
(formed by A3, A4 and B). Full details about available data, as well as the 
geological/geomorphological features of the aquifer, are provided in Deliverable 1.1.  

 

3.1 Conceptual and Numerical model 

The investigated domain, depicted in Figure 3.1, has a planar surface of about 450 km2. 
It extends over 20×23 km2 in the horizontal plane and from -450 m to 100 m a.s.l. along the 
vertical direction. Along the South-West side, the area is bounded by the Apennines. The 
system is discretized in 40 × 46 × 100 cells of uniform size of 500 m × 500 m × 5 m.  

 

 

Figure 3.1. Geographical framework of the study area within the Emilia Romagna region. 

The data available from stratigraphic information (more than 1300 boreholes, see Figure 
3.2) and lithostratigraphic sections allowed to identify 4 main categories (facies/classes or 
geomaterials) within the area. These categories are listed in Table 3.1, together with their 
volumetric percentage. Table 3.1 also reports the mean and standard deviation of the extension 
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of each category along the vertical direction, Lz. It can be noted that clay and gravel are the 
predominant facies, constituting about the 80% of the whole dataset. 

 

Class Geological material 
Volumetric percentage 

(%) 
Mean of Lz 

[m] 
Standard deviation 

of Lz [m] 
1 Clay  52.1 17.9 15.7 

2 Silt and fine sands 13.3 13.1 12.4 

3 Medium-to-coarse sands  6.4 10.4 8.9 

4 Gravel 28.2 11.7 9.0 

Table 3.1. List of geological materials composing the four classes and their volumetric percentage. 
Mean and standard deviation of the extension along the vertical direction, Lz, of each geomaterial are 

also reported. 

 

Figure 3.2. Location of the boreholes within the study area. 
 

We conceptualized the Bologna aquifer as a Composite Medium (see Section 2.1.1) 
where each block of the numerical model is formed by a geomaterial. Here we use two methods 
for facies reconstruction and we investigate the impact of the adopted approach on the aquifer 
features. The first method relies on a sequential-indicator approach, (SISIM, Deutsch and 
Journel, 1992) where a set of Monte Carlo (MC) spatial distributions of facies is generated on 
the basis of a given set of variograms (one for each category). A second method is based on a 
transition-probability approach (TPROGS, Carle and Fogg, 1996, 1997). TPROGS realizations 
are based on (i) the evaluation of the probability of transition between facies and (ii) the 
interpretation of these probabilities with a Markov-chain model. This approach is compatible 
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with the generation of non-Gaussian random fields and allows to directly control facies 
attributes such as volume proportions and mean lengths, as well as the juxtapositional 
tendencies between them. In the following, key results obtained with the two approaches are 
compared in a MC framework, by relying on a set of n = 100 realizations conditioned on the 
lithological data. 

 

3.1.1 Probabilistic facies reconstruction: SISIM simulations 

We evaluated sample indicator variograms (see Section 2.1.1) of each category from 
available boreholes lithological data. The sample horizontal and vertical variograms are 
illustrated in Figure 3.3. Exponential models fitted to the experimental variograms are also 
reported in the figure and the associated parameters are collected in Table 3.2. It can be noted 

that the sill of the k-th category, 2
k , (with k = 1…4) does not change with the direction, being 

related to the volumetric proportion, kp , according to 2 (1 )k k kp p   . Parameters listed in 

table 3.2 have been used for the generation of 100 equally-likely realizations of facies 
distribution with SISIM. For a qualitative inspection of the results, Figures 3.4a and b depicts, 
respectively, the top horizontal plane and a vertical cross-section of one SISIM simulation.  

 

 

Figure 3.3 Experimental indicator variograms for each facies along the horizontal (left) and vertical 
(right) direction. Exponential models fitted to the experimental variograms are also reported. 
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Class Geological material Sill 
Horizontal range 

[m] 
Vertical range 

[m] 
1 Clay  0.25 915 16 

2 Silt and fine sands 0.11 419 23 

3 Medium-to-coarse sands  0.06 499 20 

4 Gravel 0.21 1270 18 

Table 3.2. Exponential model parameters fitting sample indicator variograms. 

 

 

Figure 3.4. Single realization of facies generated with SISIM: (a) top horizontal layer; (b) a vertical 
cross-section. 

 

3.1.2 Probabilistic facies reconstruction: TPROGS simulations 

The transition probability, ( )jkt h , is defined as: 

 ( ) Pr  occurs at  occurs at jkt k j h x h x   (3.1) 

i.e., ( )jkt h  is the probability of finding category k at the point x+h conditional to the presence 

of category j at point x. The variation of ( )jkt h  with the separation distance (or lag) h is 

generally called “transiogram” and can be evaluated for all possible pairs of categories (j, k). 

At lag |h| = 0, (0) 0jkt   if j k  and (0) 1jkt   if j k . Transiograms tend to pk, i.e., the 

proportion of the category k, as lag increases. The procedure for the generation of random 
facies distributions can be summarized as follows:  

1) Directional experimental transiograms are evaluated on the basis of available lithological 
data. 
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2) The sample transiograms are interpreted by a Markov-chain model. Model quality criteria 
are used to select the best transiogram model. 

3) A sequential procedure is applied to infer the category in each unsampled point. The 
iteration is similar to the one implemented in SISIM, except for the estimation operator 
adopted to approximate local conditional probabilities. According to an ordinary kriging 
estimator (like the one implemented in SISIM) the probability for category k to occur in 

0x  is a weighted sum of indicator function of category k, ( )ki x , available at N locations 

x : 

    0 ,
1

Pr  occurs at  ; 1...
N

k k kk x i x N i x  


 


     (3.2) 

,k   being the weights of the kriging estimator. TPROGS uses a cokringing estimator, 

according to which the probability for category k to occur in 0x  is approximated as a 

weighted sum of indicator functions of all categories,  ji x ,with j = 1, …, K, available 

at N locations x : 

    0 ,
1 1

Pr  occurs at  ; 1... ; 1...
N K

j j jk
j

k i x N j K i x w  



 

    x   (3.3) 

being K the number of categories and ,jkw   the weights of the cokriging estimator.  

4) Facies distribution resulting after the sequential procedure are adjusted cell-by-cell to 
minimize the discrepancy between the resulting experimental transiograms and the 
theoretical Markov-chain model inferred from the data.  

 
Sample transiograms obtained from borehole data along directions x and z are collected 

respectively in Figures 3.5 and 3.6, together with the associated Markov-chain models. Their 
counterparts evaluated along the y-axis (not reported) are indistinguishable from those reported 
in Figure 3.5 for the x-axis. An example of facies distributions obtained for one realization at 
the top horizontal plane and on a vertical cross-section is depicted in Figures 3.7a and 3.7b, 
respectively. A comparison between the facies distribution obtained with SISIM and TPROGS 
indicates that the spatial facies arrangement strongly depends on the geostatistical method 
applied. SISIM allows to reproduce the covariance structure of the conditioning data and tends 
to generate fields with higher entropy than the TPROGS counterparts. Lee et al. (2007) and 
Dell’Arciprete et al. (2012) highlighted that covariance-based methods may provide the same 
degree of heterogeneity inherent with the data, but are not able to capture connected 
heterogeneity (i.e., the occurrence of channel networks). On the other hand, transition-
probability approaches, such as TPROGS, tend to preserve the spatial structure of facies in a 
way that is consistent with the data. This observation can be gathered not only from the visual 
inspection of single realizations, but also considering the ensemble behavior of the generated 
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facies fields. We compute ensemble (i.e., over n = 100 MC realizations) indicator variograms 
and transiograms, considering the facies distributions generated via SISIM and TPROGS. The 
results for all categories are depicted in Figure 3.8-3.11. It can be noted that (i) all ensemble 

variograms converge to the theoretical value 2 (1 )k k kp p   ; (ii) for all facies, TPROGS-based 

ensemble variograms are characterized by larger horizontal and vertical ranges compared to 
their SISIM counterparts (see Figures 3.8a and 3.8b); (iii) TPROG-based ensemble 
transiograms (see Figures 3.9-3.10) reach the plateau for larger separation distance respect to 
SISIM counterparts. 

 

 

Figure 3.5 Experimental transiograms along the horizontal x-axis. Markov-chain models fitting the 
sample curves are also reported. 



 WE-NEED- WatEr NEEDs, availability, quality and sustainability   
 
 

 

34 
 

 

Figure 3.6 Experimental transiograms along the vertical z-axis. Markov-chain models fitting the 
sample curves are also reported. 

 

 

Figure 3.7 Single realization of facies generated with TPROGS: (a) top horizontal layer; (b) a vertical 
cross-section. 
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Figure 3.8 Ensemble indicator variograms computed over all SISIM (circles) and TPROGS (triangles) 
MC realizations along the horizontal (left) and vertical (right) directions. 

 

Figure 3.9 Ensemble transiograms along the x-axis obtained over all TPROGS (red) and SISIM (blue) 
MC realizations. 
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Figure 3.10 Ensemble transiograms along the z-axis obtained over all TPROGS (red) and SISIM 
(blue) MC realizations. 

 

 

3.1.2 Groundwater flow model 

We considered 50 of the 100 realizations of facies distribution generated with SISIM and 
with TPROGS. For each generated facies distribution, we developed a steady state, three-
dimensional groundwater flow model. The numerical code MODFLOW-2005 (Harbaugh, 
2005) is used to simulate groundwater flow. The initial hydraulic conductivity values 
associated with each facies are i.e. k1 = 10-8 m/s, k2 = 10-6 m/s, k3 = 10-5 m/s and k4 = 10-3 m/s 
respectively for clay, silt, sand and gravel. Figure 3.11 illustrates the actual domain of 
simulation, together with the adopted boundary conditions. Figure 3.11 also depicts the 
hydraulic conductivity field obtained for one realization of the SISIM set.  

Values of hydraulic head, h, to be set along the boundaries are inferred from the kriged 
maps of h for both lower (Figure 3.12a) and upper (Figure 3.12b) confined aquifers. These 
maps have been obtained by interpolating the (detrended) measurements of piezometric levels, 
averaged over the year 2010, in each unit. As it can be seen from the comparison of Figures. 
3.12a and 3.12b, the value of h along each column of the boundary is not unique. We impose 
(i) h = constant = hu (i.e., the kriged value for the upper unit) for all cells above the bottom of 
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the highest pumping rate. In 2010, the total volume of water withdrawal was 4.8  107 m3, for 

civil (15%), industrial (65%) and agricultural (20%) purposes. Recharge from precipitations 
has been set according to precipitation and temperature data collected by ARPAE Emilia-
Romagna. Measurements are available at 7 stations within our domain, over the time window 
2006-2015. The recharge from the Reno River is generally negligible (ARPA Emilia-Romagna 
2005, 2008). 

 

3.2 Model Calibration 

Hydraulic conductivity values associated with the diverse geomaterials are calibrated in 
each MC realization on the basis of a Maximum Likelihood approach (see Section 2.4.1). As 
calibration data we consider yearly-averaged hydraulic heads collected at 20 monitoring wells 
(see Figure 3.13). A preliminary sensitivity analysis (details not shown) highlights that the 
model outcomes are not significantly affected by k values associated with the two categories 
with the smallest volume fraction – i.e., silt (13.3%) and sands (6.4 %). Therefore, reliable 
estimates of k2 and k3 cannot be obtained with the available data and we fix k2 = 10-6 m/s and 
k3 = 10-5 m/s, corresponding to intermediate characteristic values for the geomaterial 
considered.  

Figures 3.14a and 3.14b show the calibrated conductivity values obtained in all SISIM 
realizations respectively for clay and gravel. Corresponding results obtained in all TPROGS 
realizations are depicted in Figures 3.15a-b. The 95% confidence intervals, CIs, of parameter 
estimates (evaluated on the basis of the posterior covariance matrix Q, see Section 2.4) are also 
reported in Figures 3.14 - 3.15. Estimates of k1 (Figures 3.14a and 3.15a) vary appreciably 
amongst diverse realizations and are, in general, characterized by not negligible estimation 
error (quantified by the 95% CIs). On the other hand, estimates of k4 do not vary significantly 
amongst the MC realizations and are characterized by relatively small 95% CIs. 

In Figures 3.16-3.17 we assess the stability of the MC-based mean Y = ln k, Yn, for 
SISIM and TPROGS, respectively. The error in the evaluation of the sample mean scales with 

1/ n , n being the number of MC simulations. Following Ballio and Guadagnini (2004) we 

can write  

1 11 1 1
2 2

n n
n nn n

S S
Pr Y t Y Y t

n n

   

                   
 (3.4) 

where Y  is the ensemble mean of Y, nS  is the sample standard deviation of Y (computed on 

the basis of n realizations), 1nt   is the Student distribution with (n-1) degree of freedom and 

1   is the probability that Y  lies within the confidence intervals, sCI , around the sample 
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A1; (ii) h = constant = hl (i.e., the kriged value for the lower unit) for all cells below the bottom 
of A3; (iii) a linear variation of h from hu to hl with z for all cells between A1 and A3. Figure 
3.12 also highlights that the main trend of groundwater flow, directed from the Apennines 
(South-West) towards the alluvial plain of the Po River (North-East), is superimposed to a large 
cone of drawdown in the central area, where the major well fields are located. 

 

 

Figure 3.11 Numerical model and boundary conditions. The hydraulic conductivity field across a 
vertical plane of one SISIM simulation is also depicted. 

 

 
Figure 3.12 Kriged map of hydraulic heads obtained from (detrended) 2010 piezometric data 

(squares) for (a) lower and (b) upper confined aquifers.  
 

Due to the large number of wells spread throughout the domain, within each municipality 
the total withdrawal has been concentrated in one point, corresponding to the well location with 
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mean 
n

Y . The red dotted lines in Figures 3.16 and 3.17 represent sCI  evaluated by setting 

0 05.  , i.e. the 95% sCI .  
 

 

Figure 3.13 Location of the monitoring wells used for model calibration. 

 

 
Figure 3.14 Parameter estimates with 95% CIs obtained for 50 SISIM realizations. 

 

Model identification/discrimination criteria (see Section 2.4.2) have been applied to rank, 
for each method, the facies realizations. Figure 3.18 reports predicted versus measured 
hydraulic heads at monitoring wells associated with the simulation that minimizes KIC 
criterion within SISIM (Figure 3.18a) and TPROGS (Figure 3.18b) sets respectively. These 
plots suggest that the two methods provide calibration results of similar quality, as it is also 
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indicated by Table 3.3, where the results of model-identification criteria for these two 
realizations are summarized. 

Figure 3.15 Parameter estimates with 95% CIs obtained for 50 TPROGS realizations. 

Figure 3.16 SISIM. Mean of Y = ln k for (a) clay and (b) gravel versus the number of MC simulations. 

The 95% confidence intervals, sCI  , are also reported. 
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Figure 3.17 TPROGS. Mean of Y = ln k for (a) clay and (b) gravel versus the number of MC 

simulations. The 95% confidence intervals, sCI  , are also reported. 
 

Model identification/discrimination criteria (see Section 2.4.2) have been applied to rank, 
for each method, the facies realizations. Figure 3.18 reports predicted versus measured 
hydraulic heads at monitoring wells associated with the simulation that minimizes KIC 
criterion within SISIM (Figure 3.18a) and TPROGS (Figure 3.18b) sets respectively. These 
plots suggest that the two methods provide calibration results of similar quality, as it is also 
indicated by Table 3.3, collecting the results of model-identification criteria for these two 
realizations. 

 
Figure 3.18 Simulated versus observed hydraulic heads for the two realizations minimizing KIC 

amongst the set of (a) SISIM and (b) TPROGS Monte Carlo simulations.  
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Criterion SISIM set TPROGS set 

J 1188 1088 

NLL 126 125 

KIC 127 133 

AIC 130 129 

AICc 131 130 

BIC 132 131 

Table 3.3. Results of model identification criteria for the two realizations minimizing KIC amongst 
the set of SISIM and TPROGS Monte Carlo simulations. 

 

3.3 Ongoing and future planned activities 

Currently, we are performing additional numerical simulations in order to complete the 
convergence analysis. Moreover, we are planning to (i) extend the analysis within a multi-
model approach (ii) analyze connectivity indicators (considering geometrical, flow and 
transport features) of the reconstructed fields. All these aspects will be crucial for the 
probabilistic risk assessment of the investigated area. 
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Annex I - Hydrogeological cross sections of the Cremona Aquifer 

Limits of the study area together with the location of the hydrogeological cross sections. 

Cross sections are modified from Maione et al., 1991. 
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Annex II - Hydrogeological cross sections of the Bologna Aquifer 

Limits of the study area together with the location of the well fields and hydrogeological 

cross sections. Cross sections are modified from cross sections provided by the Geological, 

Seismic and Soil Survey of the Emilia Romagna Region, available at 

https://applicazioni.regione.emilia-

romagna.it/cartografia_sgss/user/viewer.jsp?service=geologia. 
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