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Objectives based on the project WPs and last meetings

Transport experiments with emerging contaminants:

Pharmaceuticals:
Roxarsone + Gd (data already available, sent to UPC)
Azithromycin (AZT, shared with Aveiro)
Perfluorooctanesulfonic acid (PFOS, shared with Aveiro)
Perfluorooctanoic acid (PFOA, shared with Aveiro)

Pt-based pharmaceuticals (partially presented previously)

Nanoparticles: (partially presented previously)
O AgNPs + silver sulfide NPs

O AuNPs

O ZnO NPs

O CuO NPs
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To meet demand, agriculture in 2050 will need to produce almost 50 %
more food, feed and biofuel than it did in 2012

“The UN updated predication are that world’s population would
reach 9.73 billion by this year....In sub-Saharan Africa and South
Asia, agricultural output would need to more than double by 2050
to meet increased demand, while in the rest of the world the
projected increase would be about one-third above current levels”
FAO. 2017. The future of food and agriculture — Trends and challenges. Rome

It can be done -
it has been done in the past ....

But , We have to overcome -
Climate change
Pollution of resources (soil, water)

For this we will have to develop much more efficient Agriculture
practices.

The future

'~ - of food and
5 =z agriculture

The global trends and challenges that are shaping our future

Sustainably improve
agricultural productivity
to meet increasing demand

Increasing food demand is worsening.
competition for natural resources,

“*" Increase in Sub-Saharan

E tai I
Address climate change and Africa and South Asia nsure a sustainable 2

natural resource base

+ Intensification of natural hazards
3 -
v« Jeopardizing crop Increasing fossil energy
and llvestock production, GHG emissions are
fish stocks and fisherles exacerbating climate change

< =,
et T . %
are still extremely poor today Eradicate extreme poverty

and reduce inequality

worldwide

LI S |

End hunger and
Improve income earning all forms of malnutrition
opportunities in rural areas ‘P"P“':]'l‘:“ 8"":“’["- B“;:"'::““"«
===~ Inequalities and climate change
and :address the root causes : TR atckarate
of migration

Globally, around

’ 6
% Make food systems more
efficient, inclusive and resilient

Outbreak of
people in more than
20 countries are affected Add - d i IO
rotracted crisis ress the need for
by ey of plants and animals Prevent transboundary

is growing alarmingly and emerging
Build resilience to : agriculture and
protracted crises, . food system threats
o disasters and conflicts [ H 9

coherent and effective
national and international
governance

Food and Agriculture Organization
of the United Nations
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Nanotechnology

Nanotechnology is being strongly advocated for improving agricultural productivity and sustainability through
promoting plant and animal health and production, effective, sustained delivery of agrochemicals (e.g.,
pesticides), and intelligent surveillance via nanosensors.

The development of pesticides using nanotechnology (i.e., nanopesticides) has drawn immense attention from
scientific and industrial communities. Over 3000 patents of nanopesticides were registered within the last

decade and some nanopesticides are already in the market.
Kah, et al. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1823-1867.

Nanotechnology
applications in
agriculture,

\ feed and food

Amenta et al. Toxicol. Pharmacol., 2015, 73, 463-476
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Number of events

Size distribution of Ce0, particles in environmental samples
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Yang and Westerhoff 2014, DOI 10.1007/978-94-017-8739-0 1
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Au-NPs

Suspension color:

red
Shape: round

( potential = -
43.8

d = 49 nm (DLS)

Ag-NPs
Suspension color:

green gray
Shape: hexagonal

( potential = -55.5

d = 79 nm (DLS)

Nanoparticles (NPs) Studied

Zn0O-NPs

Suspension color:
transparent
Shape: mixed
( potential = 10.9
d = 70 nm (DLS)

Ag,5-NPs
Suspension color:
brown
Shape: round

( potential = -51.3

d = 84 nm (DLS)
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Bromide Tracer & Gold (Au)-NP transport in partially saturated sand column

Arrows indicate end of NP injection step and start of column washing with background solution.
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Silver (Ag) -NPs transport in Partially saturated column

Br~ / Au-NP conc. 1000/500 pg L' column saturation ~35%
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Silver (Ag)-NPs transport in Partially saturated column
Reaction with solution components.
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Silver Sulfide (Ag,S)-NP transport in partially saturated column
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Breakthrough curve comparison:
Ag-NPs and Ag,5-NPs 1in partially saturated soil column
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Arrows indicate end of NP injection step and start of column washing with background solution.
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/nO-NP transport in partially saturated column
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Saturation 37%
Zeta potential 10.9 (1.45)
Average diameter DLS 66.6 (1.76)
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/n0O-NP transport in partially saturated column,
in the presence of humic acid
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cic,

/n0-NP transport in partially saturated column,
in the presence of humic acid
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Nanotechnology --- an ever increasing field

Medicine

Imaging and

/ drug delivery

Cosmetics

N Ps Sunscreens,

shampoo etc.

Biosensors

Industry
Automobile, Ag”CUItU re

lubricants, Food products
circuitry,

chemicals

PLANTS - environmental matrix
Rising concern

Inevitably released into soil-water environments

Eco-toxicity of the NPs
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Isotopically-labeled NPs provide lower background in controls and similar levels of metal
concentration when exposed to NPs. Isotopic labelling improves the detection sensitivity by
enabling a larger detection range.
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Tracing experiments with different plants
under hydroponic conditions and in soil

Hydroponic cultivation Soil cultivation

25% Hoagland’s -
solution

Tomato
omato
16 weeks 20 weeks
1 week VPIants Harvested
Plants Harvested &
” Tubers l l ‘ Tor_nato
fruits
Leaves Stems
Roots

1y
¢ Roots Shoots

Q Washed, dried, homogenized A
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Uptake of metals by A. thaliana from different states
(bulk, ionic and nanoparticle)
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Total concentrations of metals (mg/g biomass) in shoots and roots of different plants

Common reed

exposed to isotopically-labeled nanoparticles under hydroponic conditions.
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Tomato plants treated with isotopically labeled Ag-NPs, Cu-NPs & ZnO-NPs in soil (2 mg L)
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SEM and EDS of Tomato plant roots exposed to 97Ag-NPs
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Tracing experiments with Potato plants in soil under real environmental conditions
with Au-NPs (2 mg L)
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Pt-based Pharmaceuticals

Widely used in chemotherapy
Attach to DNA and inhibit cell growth
Non-selective and toxic

Detected in wastewater around the world: 4 ng/L2 - 150 ug/L®
Environmental fate: several sorption studied with conflicting

results

Dtotoxicity
Cardioctoxicity

Nephrotoxicity

Haematological toxicity

Gastrointestinal toxicity
Heptatotoxicity

Meurotoxicity

N, CI
Pt

HsMN ,ﬂ'
Pt
Hg” 1"-l,j

a. Kummerer, 2001. Chemosphere 45, 957-969. b. Lenz et al., 2007. Chemosphere 69, 1765-1774.
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Structure Formula

Solubility

[g/L] 25C

Compound

Oxaliplatin

397.29

7.9

CgH,,N,O,Pt 1.65+0.21
' +
Carboplatin C.HLN,O,Pt 371.25 17 2.30+£0.10
Cisplatin N,H,Cl,Pt 300.05 2.53 2.19 | @

J

« Cisplatin is the most reactive pharmaceutical in agueous solutions
« Carboplatin is the least reactive pharmaceutical in agueous solutions
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Oxaliplatin Speciation i -
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Speciation — Carboplatin and Cisplatin
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Experimental set-ups column experiments for fully saturated conditions

Redox
and pH
Electrodes

Electrodes

Column 1 (.

Flow :>

Column 2 (.

Fraction Collector 1 | | Fraction Collector 2

Pump 1 Pump 2
Switch 1 Switch 2
Shared Shared
Background Pharmaceutical
Solution Solution
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Sand — Benchmark — Overview

CIC, ,
L00% Carboplatin _
° WM » Different behavior for each
' Oxaliplatin i pharmaceutical
80% ¢ X
E * Ligand lability dictates fate in the sand-
] .
200 I -‘. 1o  Carboplatin and oxaliplatin exhibit very
0 - , - . .
. low reactivity
| ]
20% @ i. E Oxaliplatin | Carboplatin | Cisplatin
i Retained 7% 3% 45%
| ]
0% @—— R | “ S
0 20 40 60 PV Goykhman et al. Chemosphere 2019.
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Oxaliplatin in Soil - Overview

CIC,
40% - . Methanogenic| Iron | Oxic
] ® — Oxic

@ — Nitrate Reducing Retained 85% 84% 87% | 79%

@ - lron Reducing Released 0 . . .
300 1 @ —Methanogenic f (of Retained) | 9-6% 1.5% 0.1% | 0.4%
) # Kq [mL/g] 138 191 642 | 118

& R, 2.3 1.7 1.7 | 24

: ©
20%
O

10%

« Similar retention under all redox
conditions

« Continuous increase in recovery due
to the filling of preferential sorption
sites

0%
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Carboplatin — Practically Inert in Both Sand and Soil
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Soil - Overview (Oxic Redox Conditions)

ClCo Carboplatin - Ligand lability dictates fate in the
100% - WWW%M"M& soil-water environment
L 4 . .
80% - * Behavior ranges from tracer-like to
' pronounced sorption
60% { ¢

Oxaliplatin | Carboplatin | Cisplatin

10% A Cisplatin Retained 79% < 6% 64 %
[ |

# Oxaliplatin e e

20% -+

0%
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Conclusions

ENPs are mobile in partially saturated conditions (in both soil and sand columns).

ENP mobility is strongly affected by environmental conditions: Physical and chemical
interactions influence NP transport.

Transformed ENPs can remain in solution and be transported
Retained ENPs can be remobilized if suitable aqueous solutions are applied.

ENPs are source of metals for plants that can either transform them to ions or uptake them as
particles.

Pt-based pharmaceuticals are relatively mobile in the soil-water environment.

Similar pharmaceuticals may exhibit very different transport characteristics under similar
conditions (e.g. porous medium, solution chemistry and redox conditions).

Caution should be taken when prescribing a certain behavior to a pharmaceutical without a
direct investigation.
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Bromide Tracer & Ag-NP transport in partially saturated soil column

B Bromide
— Simulation

EPV [ml]

& Ag-NPs
— Simulation

Tracer simulated using the
Advection — Dispersion
Equation (ADE) without
retention.

Two kinetic sites model.
Langmuirian: time-dependent blocking
and depth-dependent straining.
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