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Deliverable summary 

This document provides a methodology to simulate complex nonlinear kinetic chemical 

reactions between numerical particles representing two different reactants in a given 

Lagrangian model of solute transport in porous media. By expressing the reaction rate as the 

product between a bilinear term and an arbitrarily complex term, we derive the expression 

for the probability of reaction of a particle. The derivation is based on the concept of the 

optimal Kernel Density Estimator, which can be seen as the most reliable link between 

particle positions and their densities (concentrations). The approach, theoretically valid for 

any number of spatial dimensions, is tested in both 1D and 2D Random Walk Particle 

Tracking models of reactive solute transport, with satisfactory results showing that few 

particles suffice to have an accurate representation of complex chemical reactions. We also 

show that the proposed method is particularly important when modelling slow reactions. 
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1. Introduction 

Random Walk Particle Tracking Methods (RWPTMs) offer a convenient Lagrangian 

numerical approach to simulate solute transport in porous media. RWPTMs have been 

demonstrated to be particularly efficient in dealing with aquifer heterogeneities and non-

reactive transport involving a large variety of complex processes such as non-Fickian transport 

and multiple porosity systems [Wen and Gómez-Hernández, 1996; LaBolle et al., 1996; 

Sanchez-Vila and Solis-Delfin, 1999; Salamon et al., 2006a, 2006b; Riva et al., 2008; Delay 

and Bodin, 2001; Cvetkovic and Haggerty, 2002; Berkowitz et al., 2006; Zhang and Benson, 

2008; Dentz and Castro, 2009; Benson and Meerschaert, 2009; Tsang and Tsang, 2001; Huang 

et al., 2003; Willmann et al., 2013; Henri and Fernàndez-Garcia, 2014, 2015]. This family of 

methods essentially consist of discretizing the solute mass (existing initially or injected through 

the boundaries with time) into a finite number of particles, each representing a fraction of the 

total mass, and then moving such particles according to simple relationships that represent the 

transport mechanisms considered (e.g., advection, dispersion or diffusion into stagnant zones). 

RWPTMs are mass conservative by construction, and avoid some of the inherent numerical 

difficulties associated with Eulerian approaches, i.e., numerical dispersion and oscillations 

[Salamon et al., 2006a; Benson et al., 2017].  

 

However, several disadvantages have prevented the general use of RWPTMs in reactive 

transport problems with few limited exceptions. The main roadblock is that most chemical 

reactions are written in terms of concentrations (or chemical activities), which are not directly 

accessible at any given time, unless previously reconstructed from discrete particle 

information. At this stage, one needs to keep in mind that a naive reconstruction, such as the 

use of histograms, is an error prone process that can lead to spurious fluctuations [e.g., Boso et 

al., 2013]. Consequently, as concentrations - and in some cases their gradients [e.g., De Simoni 

et al., 2007] - are reaction drivers, errors can propagate to reaction rates. Albeit recent works 

[Fernàndez-Garcia and Sanchez-Vila, 2011; Pedretti and Fernàndez-Garcia, 2013; Schmidt 

et al., 2017] have shown that the spurious fluctuations of the concentrations reconstructed from 

particles can be largely minimized by using a post-processing analysis based on kernels, 

modeling complex reactive transport problems with RWPTMs is still a challenge.  

 

The focus of this paper is on kinetic chemical reactions. In this context, several methods 

have been proposed in the literature to simulate reactive transport with RWPTMs. Simple linear 

kinetic reactive transport problems such as first-order network reactions and slow sorption can 

easily be treated with transition probabilities, without having to estimate the concentrations 

during the course of the simulations [e.g., Kinzelbach, 1987; Andricevic and Foufoula-

Georgiou, 1991; Michalak and Kitanidis, 2000; Henri and Fernàndez-Garcia, 2014, 2015]. 

Reconstruction here is an efficient post-processing tool with little drawbacks.  

 

However, the incorporation of non-linear chemical reactions involving more than one 

chemical species into the RWPTM is remarkably cumbersome. In this case, one needs to either 

re-estimate solute concentrations at any given time step or to use particle proximity 

relationships. Both these approaches present important disadvantages, which have hindered the 



 WE-NEED- WatEr NEEDs, availability, quality and sustainability   
 

4 

widespread use of RWPTMs – since the most common processes in geochemistry and 

biogeochemistry are complex, being non-linear, multi-species and affected by water-rock 

interaction. The first approach is a hybrid Lagrangian-Eulerian method by which reaction rates 

are determined from concentrations. Here, a compromise between CPU time and the back and 

forth transformation of particles to concentrations is necessary [Tompson, 1993; Tompson et 

al., 1996; Cui et al., 2014]; as aforementioned, this process is either error-prone or 

computationally expensive. The second approach is purely Lagrangian, and sophisticated 

search algorithms are needed to calculate proximity relationships [Paster et al., 2014]. Along 

this line, Benson and Meerschaert [2008] studied a simple bimolecular system (A + B → C) 

with second-order kinetics, and found that the probability of reaction of two isolated particles 

depends on both thermodynamics and the probability of collocation of two particles. Paster et 

al. [2013, 2014] extended these concepts to higher dimensions, and Ding and Benson [2015] 

used this bimolecular type of reaction as a building block to simulate the Michaelis-Menten 

enzyme kinetic model. Rahbaralam et al. [2015] demonstrated that the support volume of 

particles in the probability of collocation can be determined by using an optimal kernel 

bandwidth approach. This method speeds up the algorithm and avoids incomplete mixing due 

to the use of a limited number of particles. A first field application of the Benson and 

Meerschaert [2008] method has been recently presented by Ding et al. [2016], who simulated 

the degradation of Carbon Tetrachloride at the Schoolcraft, MI site, under anaerobic conditions. 

All existing variations of this method share an important limitation: they can only reproduce 

second-order kinetics, with the exception of those complex reactions that can be modeled as a 

combination of first-order monomolecular reactions and second-order bimolecular reactions, 

such as the aforementioned Michaelis-Menten enzyme kinetic model. 

 

In some other Lagrangian approaches such as SPH [e.g. Tartakowsky and Meakin. 2005; 

Tartakovsky et al., 2007; Herrera et al., 2009, 2017] each particle represents a volume of fluid, 

so concentrations are directly attributed to particles and diffusion/dispersion is simulated by 

exchanging mass between particles. A similar approach was used by Benson and Bolster [2016] 

to propose a particle tracking method for the simulation of chemical reactions of arbitrary 

complexity, based on mass exchange between particles which could contain any variety of 

chemical compounds. Engdahl et al. [2017] recently generalized the capabilities of the method 

by coupling it to the reaction engine PhreeqcRM [Parkhurst and Wissmeier, 2015]. Each 

particle can be seen as a mobile bin containing a fixed volume of water, and reactions occur 

inside particles according to the particle-specific solute concentrations. Some limitations can 

be attributed to these kind of methods. For instance, one needs to artificially inject empty 

particles in places where solutes can potentially diffuse, or to add immobile particles and use 

very small time steps to represent linear sorption.  

 

Most of these approaches to Lagrangian modeling of reactive transport use kernel functions 

to account for either dispersion or reaction between particles. Kernels have also been widely 

used in other fields of science like fluid mechanics [e.g., Wu and Li, 2007; Yue et al., 2004], 

computer vision and image processing [e.g., Chang and Ansari, 2005; Stößel and Sagerer, 
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2006; Takeda et al., 2007], or 3D animation [e.g., Ando and Tsuruno, 2011], just to name a 

few. 

 

In this paper, we propose a new random walk particle tracking method capable of simulating 

different sorts of complex kinetic reactions occurring between two reactants (thus generalizing 

the existing methods to simulate second-order kinetics), while maintaining the classical 

interpretation of a particle (a fraction of the total mass of a given species). To simulate 

reactions, we determine the probability that any particle reacts based on particle interactions, 

the reaction rate law and the stoichiometry. The idea behind the proposed method is to equip 

each particle with an optimal kernel function that defines the particle support [Fernàndez-

Garcia and Sanchez-Vila, 2011; Rahbaralam et al., 2015] from the beginning of the 

simulation. For convenience, complex reaction rates are expressed as the product of a second-

order bimolecular reaction and a compensation function (𝑔) that depends on the reactant 

concentrations. An approximate solution of the probability of reaction is then determined, 

providing a fully Lagrangian approach that does not entail any kind of spatial discretization. 

The probability of reaction is demonstrated to depend on the particle interaction, expressed as 

the volume integral of the product between particle kernel functions, and on the point-value of 

𝑔 at a weighted mid-position between the two particles. 

 

We then show four example column transport (1D) applications to illustrate the performance 

and the convergence of the method as a function of the initial number of particles for different 

chemical systems. To achieve this, the random walk particle tracking solution is compared with 

a highly-discretized finite difference solution that is assumed to represent the exact solution. 

The four examples represent a wide sample of the most common problems in biogeochemistry: 

two examples of non-linear aqueous reactions and two examples of non-linear reactions 

considering the water-rock interaction. Finally, a 2D example of application is presented 

evaluating the need of fully describing complex chemical kinetics in a randomly heterogeneous 

porous medium.   

 

Although the application examples are 1D or 2D reactive transport problems in stationary 

flow, the proposed method has no limitations regarding the number of spatial dimensions or 

the effect of variable velocity with time (full 4D). 

 

2. Second-order kinetic reactions 

In order to lay the groundwork for the implementation of arbitrarily complex kinetic 

reactions, we start by reviewing some concepts and then reformulating the mathematical 

expressions corresponding to second-order bimolecular reactions. Let us consider a simple 

bimolecular irreversible reaction 𝛼A + 𝛽B → 𝛾C with a reaction rate proportional to the 

concentration of both reactants,  

𝑟(𝐱, 𝑡) = 𝑘𝑓 𝑐A(𝐱, 𝑡) 𝑐B(𝐱, 𝑡), (1) 
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where 𝑐𝑠 is the concentration of the sth-species {𝑠 = A, B, C}, 𝑘𝑓 is the forward reaction 

coefficient, {𝛼, 𝛽, 𝛾} are the stoichiometric coefficients, and 𝑟(𝐱, 𝑡) is the reaction rate at the 𝐱 

location and time 𝑡, defined as: 

𝑟(𝐱, 𝑡) =
1

𝛾

𝑑𝑐C
𝑑𝑡

=  −
1

𝛼

𝑑𝑐A
𝑑𝑡

= −
1

𝛽

𝑑𝑐B
𝑑𝑡

(2) 

We refer to chemical reactions that follow equation (1) as second-order kinetic reactions, 

also implying that the reaction is of first-order with respect to each reactant. 

Although here we study an irreversible reaction, reversibility can be modeled as a 

combination of a forward reaction and a backward reaction. Further details are given at the end 

of section 3. 

 

2.1. The particle pair annihilation method 

Benson and Meerschaert [2008] found that this problem could be solved by simply 

analyzing how two isolated A and B particles react to form a C particle when 𝛼 = 𝛽 = 1. 

Although the original expression was developed for a general application, here we present it 

incorporating explicitly the effect of porosity for the particular case of porous media. In one 

dimension, the probability of reaction of these two particles in a given time interval Δ𝑡 is given 

by the expression,  

𝑃(A → C, Δ𝑡) = 𝜙−1 𝑘𝑓Δ𝑡 𝑚 
1

√4𝜋ℎ2
exp (−

(𝑋A − 𝑋B)
2

4ℎ2
) , (3) 

which is obtained as the product of the probability that the two particles will occupy the 

same differential volume times the conditional probability that, upon collocation, the particles 

will react during the time step ∆𝑡. Equation (3) is written in terms of the particle mass 𝑚 (or 

amount of substance, depending on how 𝑘𝑓 is defined; thus, in this work the term particle mass 

is used in a general sense). Here, the mass of all particles is assumed equal to 𝑚 =
Ω 𝜙[A]0

𝑁0
, 

where Ω is the initial volume occupied by the injected particles, 𝜙 is porosity, [A]0 is the initial 

concentration of species A, and 𝑁0 the number of A particles injected. Finally, ℎ = √2𝐷Δ𝑡 is 

the length of influence of one particle defined only in terms of local diffusion and/or dispersion. 

 

Once the probability of reaction of two particles is calculated, chemical reactions in the 

random walk method can be incorporated by particle annihilation, i.e., when two particles react, 

they disappear. This means that the number of particles of the reactant species decreases as the 

simulation progresses, and numerical resolution problems may arise at low concentrations. 

This limitation was addressed by Bolster et al. [2016], who showed that a change in the particle 

mass is also a valid alternative to particle annihilation.  

 

There is another strong limitation in the particle pair annihilation method. Chemical 

reactions depend on the activities of the reactants rather than on their concentrations. Thus, the 

aforementioned approach cannot reproduce second-order reactions correctly unless the ionic 

strength is not affected by the reaction or its effect on the activity coefficients is negligible. 

This is particularly relevant when modelling reactions that have an important impact on the 

ionic strength of the solution.  
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2.2. The optimal kernel approach 

2.2.1 Representation of a particle 

The RWPTM satisfies the transport equation in the limit when the number of particles 

approaches infinity. Considering that each ith particle associated with species s at time t is 

located at a point 𝐗𝑠
𝑖 , and that no size is attributed to it, its spatial distribution can be expressed 

as a Dirac delta distribution and then the concentration of a given species can be written 

formally as,  

𝑐𝑠(𝐱, 𝑡) =
1

𝜙(𝐱)
∑𝑚𝑠

𝑖  𝐸 {𝛿 (𝐱 − 𝐗𝑠
𝑖 (𝑡))}

𝑛𝑠

𝑖=1

, (4) 

where 𝑚𝑠
𝑖  is the mass of the ith particle of species s, 𝜙(𝐱) is the location dependent porosity, 

and 𝐸{⋅} is the expectation operator over all particle realizations. The expectation of the Dirac 

delta function is the probability density function (pdf) of the particle position, 𝑝𝑠
𝑖(𝐱; 𝑡). In 

practice, simulations cannot use an infinite number of particles and the inference of 𝑝𝑠
𝑖(𝐱; 𝑡) 

becomes the Achilles heel of all random walk methods. Typically, the concentration field is 

estimated by averaging the mass over a fixed support volume 𝑉(𝐱) centered at the 𝐱 location. 

This can be achieved by counting the mass of particles in fixed bins or by projection functions 

[Tompson and Gelhar, 1990; Tompson et al., 1996]. However, these methods suffer from the 

same problems as those associated with the estimation of pdfs through histograms, i.e., results 

depend on the discretization of the domain or the bin size.  

 

An alternative approach was introduced by Fernàndez-Garcia and Sanchez-Vila [2011]. 

The method recognizes the uncertainty associated with subsampling an infinite number of 

particles by equipping each particle with a pdf (the kernel function). The estimation of 

concentrations can then be written as a direct extension of (4), 

𝑐𝑠(𝐱, 𝑡) =
1

𝜙(𝐱)
∑𝑚𝑠

𝑖  𝑊(𝐱 − 𝐗𝑠
𝑖  ; 𝐇𝑠)

𝑛𝑠

𝑖=1

, (5) 

where 𝐇𝒔 is the kernel bandwidth matrix associated to species 𝑠 and 𝑊(𝐮 ; 𝐇) is the scaled 

kernel function, for which several shapes have been suggested, the most common one being 

the Gaussian kernel function,  

𝑊(𝐮;𝐇) = (2𝜋)−
𝑑
2|𝐇|−

1
2 exp (−

1

2
 𝐮𝑇𝐇−1𝐮) , (6) 

where 𝑑 is the space dimension. In the Gaussian kernel (6), the bandwidth matrix is the 

covariance matrix. Expression (5) is valid for an infinite domain or away from the domain 

boundaries. The particular treatment of boundaries is discussed in the subsequent sections. 

Note that the concentration of a given species at any given 𝐱 location does not depend only on 

the subset of particles falling into an arbitrary bin, but on all existing particles associated with 

that species. Assuming that 𝐇𝑠 = ℎ𝑠
2 𝐈𝑑 (we will refer to this case later as the isotropic kernel) 

the optimal bandwidth ℎ𝑠 associated with a given species s (also denoted  as particle support) 

can be determined based on the amount of particles 𝑛𝑠 and their distribution in space, by 
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minimizing the Asymptotical Mean Integrated Squared Error (𝐴-𝑀𝐼𝑆𝐸). This is a well-known 

procedure in statistics [e.g., Silverman, 1986; Härdle, 1991]. For a second-order kernel, 

ℎ𝑠 = (
 𝑑 𝑅(𝑊)

𝑅(∇2𝑝𝑠)𝜇2
2(𝑊)𝑛𝑠

)

1
𝑑+4

, (7) 

where 𝑅 is the 𝐿2 norm of a function, 𝜇2 is the second moment, and 𝑝𝑠 is the normalized 

concentration, 

𝑝𝑠(𝐱, 𝑡) =
𝑐𝑠(𝐱, 𝑡)

∫ 𝑐𝑠(𝐱, 𝑡) 𝑑𝐱Ω𝑑

, (8) 

where Ω𝑑 is the 𝑑-dimensional domain of the model. Note that, in this setup, the estimation 

of 𝑐𝑠 is not explicit, i.e. the estimator (7) depends circularly on the estimation (5). Hence, one 

needs to either use an iterative method or make an assumption on the approximate shape of the 

particle plume. The former approach can be computationally intensive, whereas the latter can 

lead to a suboptimal bandwidth choice, hindering the convergence rate of the estimation with 

respect to the number of particles. We refer to Engel et al. [1994] for details on the calculation 

of ℎ𝑠. Since 𝑝𝑠 in RWPTMs changes over time, the kernel bandwidth matrix 𝐇𝑠 is a time-

dependent variable that not only accounts for local diffusion and/or dispersion but also for the 

spreading and stretching of each particle plume. This approach has been used in subsurface 

hydrology to reconstruct key variables associated with a wide variety of problems, e.g., reaction 

rates and mixing measures [Fernàndez-Garcia and Sanchez-Vila, 2011], power-law tailing in 

breakthrough curves [Pedretti and Fernàndez-Garcia, 2013], and human health risk estimates 

[Siirila-Woodburn et al., 2015].  

 

2.2.2. The probability of reaction of a particle 

This section derives the probability of reaction of a given particle for a second order reaction 

with arbitrary stoichiometric coefficients. For the derivation, we assume that the problem 

domain Ω𝑑 is infinite, so expression (5) is valid at any location. At the end of section 3 it is 

discussed how the methodology can be adapted to simulate reactions near the boundaries of a 

finite domain. The chemical reaction is still represented by 𝛼A + 𝛽B → 𝛾C and the reaction 

rate follows equation (1). The probability that a particle reacts in the time interval [𝑡, 𝑡 + Δ𝑡]  

can be simply expressed as mass consumed per unit of mass,  

𝑃(A𝑖 → C𝑘, Δ𝑡) = −
Δ𝑚A

𝑖

𝑚A
𝑖
, (9) 

𝑃(B𝑗 → C𝑘, Δ𝑡) = −
Δ𝑚B

𝑗

𝑚B
𝑗
. (10) 

Here, A𝑖 refers to the ith-particle associated with species A, 𝑃(A𝑖 → C𝑘 , Δ𝑡) is the probability 

that A𝑖 is transformed into a new particle C𝑘 in the time interval Δ𝑡, and Δ𝑚A
𝑖  is the increment 

of mass of the particle A𝑖  due to the chemical reaction. This relationship was used by Salamon 

et al. [2007] and Henri and Fernàndez-Garcia [2014, 2015] to develop particle transition 

probabilities for modeling solute transport with multi-rate mass transfer and network reactions. 

From the definition of reaction rate given in (2), expressions (9) and (10) can be rewritten as:  
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𝑃(A𝑖 → C𝑘 , Δ𝑡) =
𝛼

𝑚A
𝑖
 ∫ ∫ 𝜙 𝑟A

𝑖 (𝐱, 𝑡′)  𝑑𝐱 𝑑𝑡′

Ω𝑑

𝑡+Δ𝑡

𝑡

≈
𝛼

𝑚A
𝑖
 Δ𝑡 ∫ 𝜙 𝑟A

𝑖 (𝐱, 𝑡)  𝑑𝐱

Ω𝑑

, (11) 

𝑃(B𝑗 → C𝑘 , Δ𝑡) =
𝛽

𝑚B
𝑗
 ∫ ∫ 𝜙 𝑟B

𝑗(𝐱, 𝑡′)  𝑑𝐱 𝑑𝑡′

Ω𝑑

𝑡+Δ𝑡

𝑡

≈
𝛽

𝑚B
𝑗
 Δ𝑡 ∫ 𝜙 𝑟B

𝑗(𝐱, 𝑡)  𝑑𝐱

Ω𝑑

, (12) 

where 𝑟A
𝑖 (𝐱, 𝑡) and 𝑟B

𝑗(𝐱, 𝑡) are particle reaction rates. The products 𝛼 𝑟A
𝑖 (𝐱, 𝑡) and 𝛽 𝑟B

𝑗(𝐱, 𝑡) 

define the amount of particle mass consumed per unit volume of liquid in a unit of time. The 

particle reaction rates can be derived as it follows. Substituting (5) into (1), it is possible to find 

an expression of the total chemical reaction rate as a function of particle kernel distributions,  

𝑟(𝐱, 𝑡) =
𝑘𝑓

𝜙2
∑∑𝑚A

𝑖 𝑚B
𝑗

𝑛B

𝑗=1

 𝑊(𝐱 − 𝐗A
𝑖 ; 𝐇A) 𝑊(𝐱 − 𝐗B

𝑗
; 𝐇B)

𝑛A

𝑖=1

. (13) 

The reaction rate of any particle A𝑖 or B𝑗 is determined, respectively, from the interaction 

of A𝑖 with all existing B-particles and the interaction of B𝑗 with all existing A-particles. Thus, 

the total reaction rate can be decomposed as 

𝑟(𝐱, 𝑡) =∑𝑟A
𝑖 (𝐱, 𝑡)

𝑛A

𝑖=1

=∑𝑟B
𝑗(𝐱, 𝑡)

𝑛B

𝑗=1

, (14) 

where 

𝑟A
𝑖 (𝐱, 𝑡) =

𝑘𝑓

𝜙2
𝑚A
𝑖 ∑𝑚B

𝑗
 

𝑛B

𝑗=1

𝑊(𝐱 − 𝐗A
𝑖 ; 𝐇A) 𝑊(𝐱 − 𝐗B

𝑗
; 𝐇B), (15) 

𝑟B
𝑗(𝐱, 𝑡) =

𝑘𝑓

𝜙2
𝑚B
𝑗
∑𝑚A

𝑖

𝑛𝐴

𝑖=1

 𝑊(𝐱 − 𝐗A
𝑖 ; 𝐇A) 𝑊(𝐱 − 𝐗B

𝑗
; 𝐇B). (16) 

Each term in the summation represents the interaction between two individual particles A𝑖 

and B𝑗. In the particular case of a Gaussian kernel function, the kernel product can be rewritten 

as 

 𝑊(𝐱 − 𝐗A
𝑖 ; 𝐇A) 𝑊(𝐱 − 𝐗B

𝑗
; 𝐇B) = 𝑊(𝐱 − 𝐗AB

𝑖𝑗
; 𝐇AB) 𝑊(𝐗A

𝑖 − 𝐗B
𝑗
; 𝐇A + 𝐇B), (17) 

where  

𝐇AB = (𝐇A
−1 + 𝐇B

−1)−1, (18) 

𝐗AB
𝑖𝑗
= 𝐇AB(𝐇A

−1𝐗A
𝑖  + 𝐇B

−1𝐗B
𝑗
), (19) 

which means that the product of two Gaussian kernel density functions associated with 

particles A𝑖 and B𝑗 is proportional to another Gaussian kernel function centered at 𝐗AB
𝑖𝑗

 with a 

covariance matrix 𝐇AB. Figure 1 illustrates this equivalence in one dimension. This indicates 

that the reaction between two individual particles is occurring mostly around 𝐗AB
𝑖𝑗

. The second 

kernel function on the right hand side of (17) is a constant scaling factor that only depends on 

the separation between particles.  
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Figure 1: Schematic example of a product between two Gaussian pdf’s in one dimension. The 

product (yellow) is another Gaussian function centered on 𝑋𝐴𝐵
𝑖𝑗

 and with a standard deviation 

ℎ𝐴𝐵 = √𝐻𝐴𝐵. Its integral over x is the probability density of collocation of the two particles. 

 

 

In the case where 𝐇A and 𝐇B are isotropic (𝐇𝑠 = ℎ𝑠
2𝐈𝑑), then it derives from (18) that 𝐇AB 

is also isotropic (𝐇AB = ℎAB
2 𝐈𝑑) and 

ℎAB = √
ℎA
2ℎB

2

ℎA
2 + ℎB

2
(20) 

is proportional to the harmonic mean of the squares of ℎA, ℎB. As aforementioned, 𝐗AB
𝑖𝑗

 is 

the position with maximum probability density of collocation of particles A𝑖 and B𝑗; in the 

isotropic case, expression (19) can be rewritten so that 𝐗AB
𝑖𝑗

  is simply the mid-position of the 

particle pair weighted by their corresponding squared particle support, i.e., 

𝐗AB
𝑖𝑗
=
𝐗A
𝑖  ℎB

2 + 𝐗B
𝑗
ℎA
2

ℎA
2 + ℎB

2 . (21) 

In order to integrate expressions (11) and (12), we assume a locally constant porosity over 

the kernel product support centered at 𝐗AB
𝑖𝑗

 and represented by 𝐇AB. By substituting (15) and 

(16) into (11) and (12) respectively and integrating, we finally obtain that  

𝑃(A𝑖 → C𝑘, Δ𝑡) =
𝛼 𝑘𝑓

𝜙(𝐗AB
𝑖𝑗
)
Δ𝑡∑𝑚B

𝑗

𝑛B

𝑗=1

𝑊(𝐗A
𝑖 − 𝐗B

𝑗
; 𝐇A + 𝐇B), (22) 
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𝑃(B𝑗 → C𝑘, Δ𝑡) =
𝛽 𝑘𝑓

𝜙(𝐗AB
𝑖𝑗
)
Δ𝑡∑𝑚A

𝑖

𝑛A

𝑖=1

𝑊(𝐗A
𝑖 − 𝐗B

𝑗
; 𝐇A + 𝐇B). (23) 

In the particular one-dimensional case where only one particle of each reactant is present, 

porosity 𝜙 is constant in space, 𝛼 = 𝛽 = 1, 𝐻A = 𝐻B = ℎ
2, and all particles share the same 

mass m, we have 

𝑃(A → C, Δ𝑡) = 𝑃(B → C, Δ𝑡) =
𝑘𝑓

𝜙
Δ𝑡 𝑚 

1

√4𝜋ℎ2
exp (−

(𝑥A − 𝑥B)
2

4ℎ2
) , (24) 

and we directly recover the probability of reaction between two isolated particles obtained 

by Benson and Meerschaert [2008]. We note that ℎ in (24) is not ℎ = √2𝐷Δ𝑡 but rather it is 

defined as an optimal kernel support that changes with time according to the number of 

particles remaining and the actual shape of the solute plume. We claim that this difference in 

the definition of ℎ is very significant. Benson and Meerschaert [2008] simulate incomplete 

mixing by using a low number of uniform- randomly distributed particles, which limits the 

reaction rate after some time as the A-particles become isolated from the B-particles (described 

by the authors as “islands of particles”). Along the same line, Paster et al. [2013, 2014] derive 

a relationship between the initial particle density and the noise of the initial condition, 

suggesting that the simulation of smoother initial conditions requires a higher number of 

particles. In contrast, Rahbalaram et al. [2015] show that using the adaptive kernel makes it 

possible to highly reduce the dependence of the numerical solution on the number of particles. 

Another important difference between the two approaches becomes evident when more than 

one particle of each reactant is present. In this case, the probability of reaction of a particle 

given by (22) or (23) can be seen as the sum of independent particle pair interactions. This is 

only satisfied by the particle pair annihilation method in the limit when ∆𝑡 → 0. Otherwise, the 

reaction between two particles is not a disjoint event. Section 4 provides the details of the new 

particle tracking algorithm.  

 

3. Extension to kinetic reactions with arbitrary reaction rate laws 

The challenge in extending second-order reactions to arbitrary reaction rate laws resides in 

that now the total reaction rate cannot be simply split into combinations of kernel functions 

between particle pairs. Consequently, the rate at which two particles react depends also on all 

other surrounding particles. In this case, without any loss of generality, it is convenient to 

represent the total reaction rate as the product of a second-order reaction times 𝑔, a function of 

any arbitrary shape involving the reactants’ concentrations, and denoted as compensation 

function, 

𝑟(𝐱, 𝑡) = 𝑘𝑓𝑐A(𝐱, 𝑡)𝑐B(𝐱, 𝑡) 𝑔(𝑐A(𝐱, 𝑡), 𝑐B(𝐱, 𝑡)). (25) 

Applying 𝑔 = 1 implies recovering (1). Substituting (5) into (25), and then decomposing as 

in (14) and substituting into (11) and (12), we now have, 

 

𝑃(A𝑖 → C𝑘, Δ𝑡) = 
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𝛼 𝑘𝑓

𝜙(𝐗AB
𝑖𝑗
)
Δ𝑡∑𝑚B

𝑗

𝑛B

𝑗=1

𝑊(𝐗A
𝑖 − 𝐗B

𝑗
; 𝐇A + 𝐇B) ∫ 𝑊(𝐱 − 𝐗AB

𝑖𝑗
; 𝐇AB)

Ω𝑑

𝑔(𝑐A(𝐱, 𝑡), 𝑐B(𝐱, 𝑡)) 𝑑𝐱, (26) 

 

𝑃(B𝑗 → C𝑘 , Δ𝑡) = 

𝛽 𝑘𝑓

𝜙(𝐗AB
𝑖𝑗
)
Δ𝑡∑𝑚A

𝑗

𝑛A

𝑗=1

𝑊(𝐗A
𝑖 − 𝐗B

𝑗
; 𝐇A + 𝐇B) ∫ 𝑊(𝐱 − 𝐗AB

𝑖𝑗
; 𝐇AB)

Ω𝑑

𝑔(𝑐A(𝐱, 𝑡), 𝑐B(𝐱, 𝑡)) 𝑑𝐱, (27) 

 

Because the compensation function 𝑔(𝐱, 𝑡) depends on 𝐱 in a complex manner, the 

integration of (26) and (27) is no longer direct. To overcome this problem, we approximate this 

integral by localizing the function 𝑔(𝐱, 𝑡) about the point 𝐱 = 𝐗AB
𝑖𝑗

, i.e., at the centroid of the 

kernel product (see figure 1), using a truncated first-order Taylor series expansion (i.e., 

linearizing it in terms of location), 

𝑔(𝐱, 𝑡) ≅ 𝑔(𝐗AB
𝑖𝑗
, 𝑡) + ∇𝑔(𝐗AB

𝑖𝑗
, 𝑡)

𝑇
(𝐱 − 𝐗AB

𝑖𝑗
) (28) 

The validity of this approximation is subjected to the significance of higher order terms of 

𝑔 over the kernel product domain represented by 𝐇AB. Note that the truncation error will always 

converge towards zero with an increasing number of particles, namely, as 𝐇AB approaches the 

Dirac delta. Introducing (28) into (26) and (27), and given that the first moment of the kernel 

about its centroid equals zero, we obtain  

𝑃(A𝑖 → C𝑘, Δ𝑡) =

𝛼 𝑘𝑓

𝜙(𝐗𝐴𝐵
𝑖𝑗
)
Δ𝑡∑𝑚B

𝑗

𝑛𝐵

𝑗=1

𝑊(𝐗𝐴
𝑖 − 𝐗𝐵

𝑗
; 𝐇𝐴 + 𝐇𝐵)𝑔 (𝑐𝐴(𝐗𝐴𝐵

𝑖𝑗
, 𝑡), 𝑐𝐵(𝐗𝐴𝐵

𝑖𝑗
, 𝑡)) , (29)

 

𝑃(𝐵𝑗 → 𝐶𝑘, Δ𝑡) =

𝛽 𝑘𝑓

𝜙(𝐗𝐴𝐵
𝑖𝑗
)
Δ𝑡∑𝑚𝐴

𝑖

𝑛𝐴

𝑖=1

𝑊(𝐗𝐴
𝑖 − 𝐗𝐵

𝑗
; 𝐇𝐴 + 𝐇𝐵)𝑔 (𝑐𝐴(𝐗𝐴𝐵

𝑖𝑗
, 𝑡), 𝑐𝐵(𝐗𝐴𝐵

𝑖𝑗
, 𝑡)) . (30)

 

The evaluation of 𝑔 (𝑐A(𝐗AB
𝑖𝑗
, 𝑡), 𝑐B(𝐗AB

𝑖𝑗
, 𝑡)) in (29) and (30) requires an approximate 

solution of the concentrations of the species A and B at the specific location 𝐗AB
𝑖𝑗

. One 

possibility is to estimate these concentrations directly using the kernel estimator given in (5). 

However, this would require an excessive amount of calculations. To minimize CPU time, here 

we estimated these concentrations as a linear interpolation of the concentrations obtained only 

at the particle positions, estimated a priori by (5). This is possible as long as 𝐗A , 𝐗AB and 𝐗B 

are aligned, i.e., 𝐇A and 𝐇B are isotropic, a condition that is inherently true in one dimension. 

This approach constitutes a simplification, and therefore it introduces some error in the 

solution. In the subsequent sections, we show that this error is small for a relatively low number 

of particles injected.  

 

In the case where the reaction is reversible, it can be solved by combination of a forward 

and a backward reaction probability [Benson and Meerschaert, 2008]. For example, if the 

backward reaction is a first-order decay, i.e., 
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1

𝛾

𝑑𝑐C
𝑑𝑡

= 𝑘𝑓 𝑐A(𝐱, 𝑡) 𝑐B(𝐱, 𝑡) − 𝑘𝑏𝑐C(𝐱, 𝑡), (31) 

where 𝑘𝑏 is the backward reaction coefficient, then the probability of backward reaction is 

simply, 

𝑃(C𝑘 → A𝑖 + 𝐵𝑗 , Δ𝑡) = 𝛾 𝑘𝑏 Δ𝑡, (32) 

and the mass of the disappearing particle C𝑘 has to be distributed between the generated 

particles A𝑖 and 𝐵𝑗 in proportion to their stoichiometric coefficients. This, just like the separate 

treatment of transport and reaction described in the following section, constitutes a split 

operator approach, which implies that the time step ∆𝑡 should not be too large in order to avoid 

error and instabilities. 

 

Expressions (29) and (30) were derived under the assumption that particles are not at close 

distance from the domain boundaries. Should this condition not be fulfilled, different methods 

exist in the literature to make KDE valid near domain boundaries. A simple one, in principle 

only valid for regular boundaries, is the reflection method [Silverman, 1986]: for every particle 

that is at close distance from a boundary (beneath some significance threshold) an identical 

virtual particle is placed as a reflection on the other side of that boundary. This complies with 

mass conservation inside the domain (∫ 𝑐𝑠(𝐱, 𝑡) 𝑑𝐱Ω𝑑
= ∑ 𝑚𝑠

𝑖𝑛𝑠
𝑖=1 ), and also imposes a zero-

gradient boundary condition. Then, the methodology that we describe in this paper can be used 

as long as the virtual particles are considered in the computation of the right hand side of (29) 

and/or (30). 

 

4. The random walk algorithm 

In the proposed method, reactive transport is solved in two stages, one corresponding to the 

chemical reactions, and another one to the standard advection-dispersion equation. This split 

operator approach is known in the literature as RT [Simpson and Landman, 2007]. Of course, 

other split operator approaches could also be implemented in a similar way. Morshed and 

Kaluarachchi [1995] show that operator splitting in non-linear reactive transport can have 

significant restrictions on the time step size to obtain accurate solutions. Simpson and Landman 

[2007] show that the error associated to operator splitting can be removed by using an 

alternating scheme provided ∆𝑡 is sufficiently small. Paster et al. [2014] derive some practical 

criteria for the selection of the time step in a Lagrangian model of reactive transport with second 

order kinetics. In this work, the time step was simply chosen small enough in each example to 

reach convergence of the solution. Alternatively, an adapted time step can be estimated by 

fixing the maximum probability of reaction. This way, the time step is respectively small or 

large at stages where the reaction is fast or slow. 

 

The procedure used in this work to simulate kinetic reactions based on the probabilities 

determined by (29) can be written as it follows: First, for each time step Δ𝑡, the probability of 

reaction of only one of the reactants (A or B) is estimated. For simplicity, and without any loss 

of generality, we will assume it to be the reactant A. Then, a uniform [0, 1] random number 𝜇 
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is drawn for each A-particle and compared to the corresponding probability of reaction, 

𝑃(A𝑖 → C𝑘, Δ𝑡). If 𝜇 ≤ 𝑃(A𝑖 → C𝑘, Δ𝑡), it is considered that particle A𝑖 does not react and the 

algorithm continues with the next A-particle. On the contrary, if 𝜇 > 𝑃(A𝑖 → C𝑘, Δ𝑡), the A-

particle reacts with a number of nearby B-particles (the closest ones). To satisfy stoichiometry, 

the number of B-particles reacting with the A-particle, denoted here as 𝑛𝑟, is a positive integer 

value that should fulfill the following expression, 

𝛼∑𝑚B
𝑗

𝑛𝑟

𝑗=1

= 𝛽 𝑚A
𝑖 . (33) 

When the reaction occurs, one C-particle is injected at each 𝐗AB
𝑖𝑗

 position located between 

the reacting particle pairs {A𝑖 , B𝑗}. These reacting particle pairs disappear after that. Again, by 

stoichiometry, the mass associated with each new C-particle should fulfill that 

∑𝑚C
𝑘

𝑛𝑟

𝑘=1

=
𝛾

𝛼 + 𝛽
(𝑚A

𝑖 +∑𝑚B
𝑗

𝑛𝑟

𝑗=1

 ) . (34) 

If all particles associated with a given species share a constant mass, these expressions 

reduce to the following simple relationships,  
𝑚A
𝑚B

=
𝛼

𝛽
 𝑛𝑟 , (35) 

𝑚C =
𝛾

𝛽
 𝑚B. (36) 

To satisfy (35) when 𝑛𝑟 is a real value, this expression simply requires to slightly modify 

the particle mass associated with the reactants prior to the beginning of the simulation. In the 

case of an instantaneous injection or to reproduce an initial condition, this will imply choosing 

an adequate ratio between the number of particles of each reactant. A valid alternative, not 

implemented in this work although perfectly compatible with the presented method, is to 

change the particle mass upon reaction [Bolster et al., 2016], using (9) and (10) to determine 

the particle mass variation from the computed probability. Another alternative is to decide the 

reaction of particle pairs {A, B} based on Bernoulli trials with a probability of failure determined 

by 𝑓 = 𝑛𝑟 − 𝐹(𝑛𝑟). Here, 𝐹(𝑥) is the floor function defined as the greatest integer less than or 

equal to 𝑥. However, in this case, stoichiometry is only fulfilled in an average sense. The latter 

approach is used in Example 1.   

 

After this, following the standard random walk method, each particle is moved according to 

a drift term and a Brownian motion to respectively simulate advection and dispersion,  

𝐗𝑠
𝑖 (𝑡 + Δ𝑡) = 𝐗𝑠

𝑖 (𝑡) + 𝐯𝑠 (𝐗𝑠
𝑖 (𝑡))  Δ𝑡 + 𝐄𝑠 (𝐗𝑠

𝑖 (𝑡)) 𝛏√Δ𝑡, (37) 

where 𝐗𝑠
𝑖 (𝑡) is the ith particle position associated with species 𝑠, 𝐯𝑠 is the particle velocity 

associated with species s given by 𝐯𝑠 =
𝐪

𝜙𝑅𝑠
+

1

𝜙𝑅𝑠
∇ ⋅ (𝜙𝐃𝑠), 𝑅𝑠 is the retardation factor 

associated with species 𝑠, 𝐃𝑠 is the local hydrodynamic dispersion tensor associated with 

species 𝑠, 𝐄𝑠 is the Brownian displacement matrix determined by 𝐄𝑠𝐄𝑠
𝑇 = 2𝐃𝑠/𝑅𝑠, and 𝛏 is a 

vector of 𝑑 standard normally distributed random numbers. Note that the method can directly 

support species-dependent properties such as effective particle velocity (affected by 
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retardation) and dispersion. Note also that alternative equations to the advection-dispersion 

could be used in this step (e.g., Continuous Time Random Walks), as the processes of transport 

and reaction are fully decoupled. 

 

5. Performance and convergence of the method 

Four simple hypothetical case examples were solved using the proposed methodology to 

evaluate the performance and convergence of the method as a function of the number of 

injected particles. The selected problems illustrate a wide range of possible applications. For 

each problem, we simulate reactive transport in a one-dimensional column of unit (1 m2) cross-

section, with constant velocity, porosity, and dispersion, to emphasize only the relevance of 

the complex reactions. The parameter values adopted in each example are given in table 1. 

 

Simulations are performed in a Monte Carlo framework consisting of 100 random walk 

particle tracking realizations. Results are compared with those obtained from a very finely 

discretized finite difference solver for the ADRE with explicit time stepping and upwind 

differences in space for the advection term, which was checked for spatial and temporal 

convergence. The finite difference solution is assumed to represent the true solution. As 

explained in the previous section and although other approaches could be used, we assigned 

equal mass to all particles belonging to the same species so that stoichiometry is fulfilled 

exactly. Whenever possible, we imposed that the ratio of the reactant masses matches that of 

the stoichiometric coefficients, i.e., 𝑛𝑟 = 1 in (35). The method was implemented in a Random 

Walk Particle Tracking code written in Matlab. At the start of each simulation, 5000 particles 

of each reactant were injected following Gaussian distributions in space characterized by the 

mean, the standard deviation and the total amount of substance indicated in table 1. In all cases, 

the concentration of all compounds in the inflow is zero at all times.  

 

Table 1: Parameter values used in the 1D simulations.* 

Example 1 2 3 4 

Compound 𝐀 𝐁 𝐂 𝐂𝐇𝟐𝐎 𝐎𝟐 𝐂𝐎𝟐 𝐂𝐚𝟐+ 𝐂𝐎𝟑
𝟐− 𝐂𝐚𝐂𝐎𝟑 𝐇+ 𝐂𝐚𝟐+ 𝐇𝐅𝟎 

𝝁𝒙,𝒊𝒏 (𝐦) 40 50 − 70 50 − 25 35 − 90 90 − 

𝝈𝒙,𝒊𝒏 (𝐦) 6 6 − 2 8 − 5 8 − 5 20 − 

𝒎𝒊𝒏 (𝐦𝐨𝐥) 1 1 0 1 1 0 2.5 2.5 0 2 4 0 

𝜶, 𝜷, 𝜸 2.3 1.3 1 1 1 1 1 1 1 2 1 2 

𝜽 2.3 1.3  − − − − − − − 1.6 −0.8 − 

𝒌𝟏/𝟐 (𝐦𝐨𝐥/𝐦
𝟑) − − − 1.667  0.016  − − − − − − − 

å (𝐧𝐦) − − − − − − 0.6 0.5  − − − − 

𝑹 1 1 1 3 1 1 1 1 ∞ 1 1 1 

𝒌𝒇 6.00 (mol/m3)−2.6 day−1 0.15 (mol/m3) day−1   0.40 (mol/m3)−1 day−1 0.72 (mol/m3)0.2 day−1 
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𝒒 (𝐦/𝐝𝐚𝐲) 0.30 0.32 0.10 0.50 

𝝓 0.25 0.25 0.25 0.25 

𝑫 (𝐦𝟐/𝐝𝐚𝐲) 0.40 0.50 0.15 0.40 

𝝉 (𝐝𝐚𝐲𝐬) 80 65 100 7 

* 𝜇𝑥,𝑖𝑛, 𝜎𝑥,𝑖𝑛 are the mean and standard deviation defining the initial normal distribution of solute particles in space, 𝑚𝑖𝑛 is 

the total amount of substance at the start of the simulation, 𝑘1/2 is the half-saturation constant in the Michaelis-Menten model, 

and 𝜏 is the total simulated time. The rest of variables are defined in the text. 

 

The support of each species was estimated through (7) by assuming a Gaussian shape of the 

particle plume. This leads to a suboptimal approximation of the particle support volume written 

as [e.g. Silverman, 1986], 

ℎ𝑠 = 1.06 𝜎𝑥,𝑠 𝑛𝑠
−
1
5, (38) 

where the index s denotes the chemical species, 𝑛𝑠 is the number of particles of the sth 

species, and 𝜎𝑥,𝑠 is the standard deviation of the particle positions of the sth species at a given 

time.  

 

5.1. Description of the chemical systems 

Example 1. A Generic reaction with fractional exponents 

In this first example, we consider a generic kinetic reaction with arbitrary stoichiometric 

coefficients, 𝛼 A + 𝛽 B → 𝛾 C. The reaction rate is written as 

𝑟(𝑥, 𝑡) = 𝑘𝑓 𝑐A𝑐B 𝑔(𝑐A, 𝑐B), (39) 

where the compensation function g in this case is 

𝑔(𝑐A, 𝑐B) = 𝑐A
𝜃A−1 𝑐B

𝜃B−1. (40) 

Here, 𝜃A and 𝜃B are arbitrary real values, often (but not always) associated with the 

stoichiometric coefficients. To illustrate that any reaction with fractional exponents can be 

properly simulated, we chose 𝜃A = 𝛼 = 2.3 and 𝜃B = 𝛽 = 1.3.  

 

Example 2. Aerobic Michaelis-Menten degradation considering linear sorption of 

organic carbon 

In this example we reproduce the aerobic biodegradation of an organic chemical compound 

dissolved in groundwater. The organic compound (CH2O) is subject to linear sorption, with a 

retardation factor 𝑅 = 3. Microbial growth and decay is neglected, and the dissolved organic 

carbon is assumed to react with dissolved oxygen to form carbon dioxide and water, CH2O +

O2 → CO2 + H2O. The reaction rate follows the Michaelis-Menten kinetic model written here 

as 

𝑟(𝑥, 𝑡) = 𝑘𝑓 𝑐CH2O 𝑐O2  𝑔(𝑐CH2O, 𝑐O2), (41) 

with function g being defined in this case as 

𝑔(𝑐CH2O, 𝑐O2) =
1

𝑘CH2O + 𝑐CH2O
 

1

𝑘O2 + 𝑐O2
. (42) 
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𝑘CH2O and 𝑘O2 are the half-saturation constants associated with the dissolved organic carbon 

and oxygen, respectively.  

 

The plume of oxygen rapidly migrates towards the organic chemical compound with an 

effective retardation of 𝑅 = 1. We assumed that the carbon dioxide produced by the chemical 

reaction remains dissolved in groundwater as CO2 (aq). The degradation constant value and the 

half-saturation constant values are taken from Rolle et al. [2008] and Nagy et al. [2009].  

 

Example 3. Calcite precipitation  

This example simulates the precipitation of calcium carbonate that takes place at the contact 

fringe of two moving solute plumes of Ca2+ and CO3
2−. Remarkably, we consider the effect of 

the nontrivial activity coefficients involved in the chemical reaction. We neglect the changes 

in the hydraulic properties of the porous medium resulting from precipitation. Back-dissolution 

is also omitted. The chemical reaction is formally written as Ca2+ + CO3
2− →  CaCO3(s). The 

rate of precipitation is represented by [e.g., Nancollas, 1979], 

𝑟(𝑥, 𝑡) = 𝑘𝑜𝑏𝑠(Ω − 1), (43) 

where 𝑘𝑜𝑏𝑠 is an observed or effective rate constant and Ω is the saturation state. We can 

rewrite this expression as: 

𝑟(𝑥, 𝑡) = 𝑘𝑓 cCa2+  cCO32− ( 𝛾Ca2+  𝛾CO32− −
𝑘𝑒𝑞

cCa2+  cCO32−
) . (44) 

Here, 𝛾𝐶𝑎2+  , 𝛾𝐶𝑂32− are the activity coefficients of 𝐶𝑎2+ and 𝐶𝑂3
2−, respectively, 𝑘𝑒𝑞 is the 

equilibrium or solubility constant, and 𝑘𝑓 = 𝑘𝑜𝑏𝑠/𝑘𝑒𝑞. From this, the compensation function 

associated with this chemical reaction is expressed as 

𝑔(cCa2+ , cCO32−) =  𝛾𝐶𝑎2+  𝛾𝐶𝑂32− −
𝑘𝑒𝑞

cCa2+  cCO32−
. (45) 

We assume that Ca2+ and CO3
2− are the only ions with significant concentrations in the 

solution. Then, by using the extended Debye-Hückel formula, the activity coefficients 

𝛾Ca2+  𝛾CO32− are calculated as,  

log10(𝛾Ca2+  𝛾CO32−) =

−4𝑘1

(

 
 
 

1

1

√2(cCa2+ + cCO32−)

+ 𝑘2 åCa2+
 +  

1

1

√2(cCa2+ + cCO32−)

+ 𝑘2 åCO32−

)

 
 
 

, (46)
 

where 𝑘1 = 0.018846 m
3/2/mol1/2 and 𝑘2 = 0.103755 m3/2/mol1/2 𝑛𝑚 for water at 

25ºC (assuming that the density of water is 𝜌𝑤 = 1 Kg/dm
3), and åCa2+ , åCO32− are the 

hydrated radii of the respective ions [Garrels and Christ, 1965]. Values for 𝑘𝑜𝑏𝑠, 𝑘𝑒𝑞 were 

taken from van Breukelen [2003] and Appelo and Postma [2005], respectively.  

 

Example 4. Acidic dissolution of Fluorite:  
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This example describes the acidic dissolution of fluorite. The chemical reaction is CaF2 +

2H+ →   Ca2+ + 2HF0, and the dissolution rate is typically represented by [Zhang et al., 2006], 

𝑟(𝑥, 𝑡) = 𝑘 𝑆𝑠 (𝑐H+
2 /𝑐Ca2+)

𝛼, (47) 

Where 𝑆𝑠 is the mineral (CaF2) surface per cubic meter of the porous medium, and 𝑘 and 𝛼 

are experimental parameters. Zhang and coworkers found that at 25ºC log 𝑘 ranged 

approximately between −2 and −4 for different experimental conditions, whereas 𝛼 had values 

between 0.495 and 1.146. Here, we chose log 𝑘 = −4 and 𝛼 = 0.8, so that 

𝑟(𝑥, 𝑡) = 𝑘 𝑆𝑠 𝑐H+
θ
H+  𝑐

Ca2+
θ
Ca2+ , (48) 

where θH+ = 1.6 and θCa2+ = −0.8. This kinetic model resembles that of Example 1, but 

with the presence of a negative exponent in the concentration of Ca2+. We consider that 

Fluorite is everywhere in the system and in high amounts, and so 𝑆𝑠 is a constant. Then the 

model has only one reactant and two products, although one of the products has an influence 

on the reaction rate. This means that, for this particular case, injection of the product particles 

is performed directly on the position of the reacting particle. We neglect the changes in the 

hydraulic properties of the porous medium resulting from dissolution. The chemical reaction 

can be embedded in (24) by defining that  

𝑔(cH+ , cCa2+) = 𝑐H+
θ
H+
−1
 𝑐
Ca2+
θ
Ca2+

−1
, (49) 

and 𝑘 𝑆𝑠 = 𝑘𝑓. In this case, two overlapping plumes of H+ and Ca2+ are injected at the same 

initial location (note that the reaction rate has an asymptote in case of total absence of Ca2+).  

 

5.2. Results 

Figures 2-5 compare the random walk solution obtained at the end of the simulation time 

with the corresponding finite difference solution for each reactive transport problem. The 

random walk solution is presented in terms of the mean concentration of the different chemical 

species and its standard deviation (the shaded zone delimits ±1 standard deviation) obtained 

from 100 realizations. For completeness, the corresponding evolution of the total mass of the 

different chemical species remaining in the column during the simulation are also depicted in 

these figures. Considering that the reactive transport problems were simulated with only 5000 

particles, a good match is obtained for all cases.  
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Figure 2: (a) Solute concentrations in Example 1, at the start of the simulation and after 80 

days. (b) Evolution in time of the total amount of substance of each compound. The error zones 

around the Random Walk curves indicate ±1 standard deviation.  
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Figure 3: (a) Solute concentrations in Example 2, at the start of the simulation and after 65 

days. (b) Evolution in time of the total amount of substance of each compound. The error zones 

around the Random Walk curves indicate ±1 standard deviation. 
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Figure 4: (a) Solute concentrations in Example 3, at the start of the simulation and after 100 

days. (b) Evolution in time of the total amount of substance of each compound. The error zones 

around the Random Walk curves indicate ±1 standard deviation.  
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Figure 5: (a) Solute concentrations in Example 4, at the start of the simulation and after 7 

days. (b) Evolution in time of the total amount of substance of each compound. The error zones 

around the Random Walk curves indicate ±1 standard deviation.   
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We note that larger deviations from the finite difference solution can be seen at the 

concentration peaks. This is mostly attributed to the fact that the suboptimal approximation of 

the particle support volume directly affects the calculation of the probabilities in (29) through 

the estimation of concentrations in the compensation function 𝑔. This effect is seen most 

significant when 𝑔 deviates from zero-order (corresponding to second-order kinetic reactions, 

where there is no need for compensation).  

 

The approximation (38) used to determine the particle support volume ℎ𝑠 is only valid for 

Gaussian distributions of the species’ concentrations. This is particularly not satisfied for 

calcium ion in the acidic dissolution of Fluorite (see Figure 5). Hence, errors in the estimation 

of the resulting concentration map in this case example are slightly larger than in the others. In 

practice, the use of such an approximation of ℎ𝑠 (known as the rule-of-thumb in statistics), 

implies that more particles are needed to match the exact solution. Yet, the use of (7) may 

become computationally expensive in reactive transport problems otherwise. 

 

Figure 6 shows the average relative error (𝜖𝑟) and the coefficient of variation (𝐶𝑉𝑟) of the 

increase in the total amount of substance at the end of the simulation, calculated over 100 

realizations by comparison with the finite difference solution,  

𝜖𝑟 =
〈𝑀𝑃𝑇〉 − 𝑀𝐹𝐷

∆𝑀𝐹𝐷
, (50) 

𝐶𝑉𝑟 =
√〈𝑀𝑃𝑇

     2〉 − 〈𝑀𝑃𝑇〉2

|∆𝑀𝐹𝐷|
, (51) 

where 𝑀𝑃𝑇 is the total mass of a given chemical compound obtained at the final simulation 

time, 〈·〉 is the mean operator over all realizations, 𝑀𝐹𝐷 is the total mass of the chemical 

compound obtained with finite difference at the end of the simulation time, and ∆𝑀𝐹𝐷 is the 

total mass variation of the chemical compound obtained with the finite difference method. The 

mean relative error 𝜖𝑟 represents the systematic error associated to one realisation, whereas 𝐶𝑉𝑟 

accounts for its random variability. Note that the sum of the squares of these two parameters is 

the Mean Squared Error (MSE) of ∆𝑀𝑃𝑇, normalized by ∆𝑀𝐹𝐷
     2. Results show that the proposed 

random walk method converges towards the exact solution with an increasing number of 

particles. It also demonstrates that not many particles are needed to simulate complex chemical 

reactions with sufficient accuracy. 
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Figure 6: Magnitude of the two measured error components for different initial number of 

particles of the reactants. 

 

6. Importance of chemical kinetics in heterogeneous aquifers: An example 

A two-dimensional implementation of the proposed method in a heterogeneous aquifer is 

given in this section. The objective of this example is to illustrate the application of the 

presented random walk approach in a more realistic setting. In doing this, we analyze the need 

of fully describing the chemical kinetics in heterogeneous porous media.  

 

We study a reactive transport problem in a 2D rectangular confined aquifer with dimensions 

of 100.5×50 m2. The aquifer is characterized by a randomly generated log-normally distributed 

hydraulic conductivity field 𝑌 = ln𝐾 with a mean of 〈𝑌〉 = 3 and a variance of 𝜎𝑌
2 = 1. The 

𝑌 field follows an isotropic exponential covariance function model with integral length scale 

of 𝐼𝑌 = 5 m. The other aquifer properties are assumed homogeneous. The porosity is 𝜙 = 0.25, 

and the local hydrodynamic dispersion tensor is calculated as proportional to the velocity [e.g. 

Bear and Cheng, 2010], with a longitudinal dispersivity of 0.05 m and a transverse dispersivity 

of 0.01 m. Groundwater flow is considered at steady-state and subject to constant head 

conditions at the lateral boundaries and impermeable conditions otherwise. As a result, the 

mean flow direction is oriented in the x-direction and characterized by a mean hydraulic 

gradient of 0.00622. The flow problem is solved with a finite-difference code, MODFLOW-

2000 [Harbaugh et al., 2000], with a domain discretized into regular cells of size 0.5 m. The 
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resulting cell face flows were used to compute the random walk particle velocities according 

to the hybrid interpolation method suggested by LaBolle et al. [1996].  

 

The reactive transport problem is similar to the one defined in Example 2 but considers a 

two-dimensional heterogeneous porous medium. A schematic representation of the system is 

shown in Figure 7. A plume of oxygen passes after some time through a plume of dissolved 

organic matter, retarded with respect to groundwater by linear sorption. The chemical reaction 

follows the Michaelis-Menten kinetic model with the same formulation and chemical 

parameter values as given in Example 2 (see Table 1). The concentrations of the reactants are 

initially uniform with a value of 0.2 mol/m3 in the two separate rectangular regions depicted 

in Figure 7 and zero everywhere else in the domain. The concentration of all compounds in the 

inflow water is zero at all times. 

 

 
Figure 7: Log-conductivity field used in the 2D heterogeneous application example. The blue 

and red rectangles depict the 5×10 m2 regions over which the reactants are uniformly 

distributed at 𝑡 = 0. 

 

The fast method of Botev et al. [2010] was used at the start of each time step to determine 

the kernel bandwidth associated to each species, with a slight modification: the anisotropic 

kernel bandwidth matrix 𝐇𝑠 obtained by this method was transformed into an isotropic 

bandwidth by matching the determinants, i.e., ℎ𝑠
4 = det (𝐇𝑠). As explained in section 3, the use 

of isotropic kernels facilitates the computation of the compensation function 𝑔 at the 𝐗𝐴𝐵
𝑖𝑗

 

location by linear interpolation. However, the kernel obtained by this approach is suboptimal 

compared to the original method by Botev et al. [2010], and presumably produced a slower 

convergence with respect to the number of particles.   

 

The convergence of the random walk solution was controlled by choosing a small enough 

time step and by performing a sensitivity analysis with respect to the number of particles. As 

expected, the convergence occurred for a higher number of particles compared to the 1D 
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examples. Nevertheless, by using only 32,768 particles of each reactant, the estimated error in 

the total amount of product generated was below 1% as compared to the solution obtained with 

131,072 particles. Figure 8 shows the three particle plumes at different moments of the 

simulation (for a better visualization, only a random subsample of 5,000 particles is shown), 

and the corresponding KDE reconstruction of the product concentrations. 

 

 
Figure 8: (Left) Snapshots of the particle plumes of the reactants and the product at different 

times of the 2D simulation. (Right) Corresponding concentration maps of the reaction 

product estimated by KDE.  

  

The impact of the reaction kinetics on the problem solution depends on whether the process 

is actually limited by the reaction kinetics or rather by the rate at which the reactants mix. In 

order to illustrate this, we compare the evolution of the CO2 production with the following 

equivalent second-order reaction, 
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𝑟(𝐱, 𝑡) =
𝑘𝑓

𝑘CH2O 𝑘O2
 𝑐CH2O 𝑐O2 , (52) 

for three different values of 𝑘𝑓 ranging from five times smaller to five times higher than the 

value given in Table 1. Figure 9 shows that for a very fast reaction rate the process is mixing-

limited (in this case mixing is driven by the difference in the retardation coefficients), and 

therefore the reaction kinetics do not have a significant effect on the results. These kind of 

reactions can be modeled as instantaneous [e.g. Chu et al., 2005], as long as the mixing process 

is well represented by the transport model. On the other hand, in slow reactions, the reaction 

kinetics can make a very important difference in the results.    

 

 
Figure 9: Comparison of the evolution in time of the total product formation for the described 

Michaelis-Menten and Second-Order reactions, for different values of 𝑘𝑓. 

 

7. Conclusions 

We have presented a new random walk particle tracking method to simulate reactions with 

complex kinetics involving two reactants. Reactive transport is solved in two stages: the first 

one corresponding to the chemical reactions, and the second one to the standard advection-

dispersion equation. The method is based on the representation of particles by optimal kernel 

functions. This way, we derived the probability that a given particle reacts with any particle 

associated with other reactants. In the proposed methodology, complex kinetic reactions 

require linearizing a function of the local concentrations at the location of highest probability 

density of encounter between potentially reactive particle pairs. The implementation of the 

probability of reaction in random walk models has been achieved in this paper by particle 

annihilation, but other approaches such as particle mass variations can easily be incorporated. 

 

In addition, two simple relationships should be satisfied to fulfill stoichiometry: one relating 

the mass of interacting particles with the stoichiometric coefficients, and another one relating 

the mass of particles produced from reactions with the stoichiometric coefficients. In practice, 
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the first relationship requires a careful choice of the mass of the particles injected. The second 

relationship determines the mass of particles produced from the chemical reaction.  

 

Several synthetic examples demonstrate the potential applicability of the method in a wide 

range of applications, ranging from reaction-rate laws with fractional exponents to acidic 

dissolution and precipitation systems with nontrivial activity coefficients. Results have shown 

that a good match with a finite difference solution is obtained with relatively few particles. The 

method has been demonstrated to converge to the solution with an increasing number of 

particles. This rate of convergence depends on the type of chemical reaction, i.e., on the shape 

of the compensation function g. Finally, a 2D example dealing with Michaelis-Menten 

biodegradation in a randomly heterogeneous aquifer is provided to illustrate the capabilities of 

the method in a more realistic setting.  

 

References 

Ando, R., and R. Tsuruno (2011), A Particle-based Method for Preserving Fluid Sheets, in Proceedings of the 2011 ACM 

SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–16, ACM, New York, NY, USA. 

Andricevic, R., and E. Foufoula-Georgiou (1991), Modeling kinetic non-equilibrium using the first two moments of the residence time 

distribution, Stoch. Hydrol. Hydraul., 5(2), 155–171, doi:10.1007/BF01543057. 

Appelo, C. A. J., and D. Postma (2006), Geochemistry, Groundwater and Pollution, Vadose Zo. J., 5(1), 510, doi:10.2136/vzj2005.1110br. 

Bear, J., and A. H.-D. Cheng (2010), Modeling Groundwater Flow and Contaminant Transport, pp. 360–361, Springer, Dordrecht, 

Netherlands. 

Benson, D. A., T. Aquino, D. Bolster, N. Engdahl, C. V. Henri, and D. Fernàndez-Garcia (2017), A comparison of Eulerian and Lagrangian 

transport and non-linear reaction algorithms, Adv. Water Resour., 99, 15–37, doi:10.1016/j.advwatres.2016.11.003. 

Benson, D. A., and D. Bolster (2016), Arbitrarily complex chemical reactions on particles, Water Resour. Res., 52(11), 9190–9200, 

doi:10.1002/2016WR019368. 

Benson, D. A., and M. M. Meerschaert (2009), A simple and efficient random walk solution of multi-rate mobile/immobile mass transport 

equations, Adv. Water Resour., 32(4), 532–539, doi:10.1016/j.advwatres.2009.01.002. 

Benson, D. A., and M. M. Meerschaert (2008), Simulation of chemical reaction via particle tracking: Diffusion-limited versus thermodynamic 

rate-limited regimes, Water Resour. Res., 44(12), n/a-n/a, doi:10.1029/2008WR007111. 

Berkowitz, B., A. Cortis, M. Dentz, and H. Scher (2006), Modeling Non-fickian transport in geological formations as a continuous time 

random walk, Rev. Geophys., 44(2), doi:10.1029/2005RG000178. 

Bolster, D., A. Paster, and D. A. Benson (2016), A particle number conserving Lagrangian method for mixing-driven reactive transport, Water 

Resour. Res., 52(2), 1518–1527, doi:10.1002/2015WR018310. 

Boso, F., A. Bellin, and M. Dumbser (2013), Numerical simulations of solute transport in highly heterogeneous formations: A comparison of 

alternative numerical schemes, Adv. Water Resour., 52, 178–189, doi:10.1016/j.advwatres.2012.08.006. 

Botev, Z. I., J. F. Grotowski, and D. P. Kroese (2010), Kernel density estimation via diffusion, Ann. Stat., 38(5), 2916–2957, doi:10.1214/10-

AOS799. 

Chang, C., and R. Ansari (2005), Kernel particle filter for visual tracking, IEEE Signal Process. Lett., 12(3), 242–245, 

doi:10.1109LSP.2004.842254. 

Chu, M., P. K. Kitanidis, and P. L. McCarty (2005), Modeling microbial reactions at the plume fringe subject to transverse mixing in porous 

media: When can the rates of microbial reaction be assumed to be instantaneous?, Water Resour. Res., 41(6), 1–15, 

doi:10.1029/2004WR003495. 

Cui, Z., C. Welty, and R. M. Maxwell (2014), Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach, 

Comput. Geosci., 70, 1–14, doi:10.1016/j.cageo.2014.05.005. 

Cvetkovic, V., and R. Haggerty (2002), Transport with multiple-rate exchange in disordered media, Phys. Rev. E - Stat. Nonlinear, Soft Matter 

Phys., 65(5), doi:10.1103/PhysRevE.65.051308. 

De Simoni, M., X. Sanchez-Vila, J. Carrera, and M. W. Saaltink (2007), A mixing ratios-based formulation for multicomponent reactive 

transport, Water Resour. Res., 43(7), doi:10.1029/2006WR005256. 

Delay, F., and J. Bodin (2001), Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in 

fracture networks, Geophys. Res. Lett., 28(21), 4051–4054, doi:10.1029/2001GL013698. 

Dentz, M., and A. Castro (2009), Effective transport dynamics in porous media with heterogeneous retardation properties, Geophys. Res. 

Lett., 36(3), doi:10.1029/2008GL036846. 

Ding, D., and D. A. Benson (2015), Simulating biodegradation under mixing-limited conditions using Michaelis-Menten (Monod) kinetic 

expressions in a particle tracking model, Adv. Water Resour., 76, 109–119, doi:10.1016/j.advwatres.2014.12.007. 



 WE-NEED- WatEr NEEDs, availability, quality and sustainability   
 

29 

Ding, D., D. A. Benson, C.V. Henri, D. Fernàndez-Garcia, M.S. Phanikumar, and D.W. Hyndman (2016), Application of a Lagrangian Particle 

Tracking and Reaction method to simulate the field-scale bioremediation experiment at the Schoolcraft site, Michigan. Paper presented 

at the 2016 AGU Fall Meeting, San Francisco, USA. 

Engdahl, N. B., D. A. Benson, and D. Bolster (2017), Lagrangian simulation of mixing and reactions in complex geochemical systems, Water 

Resour. Res., 53(4), 3513–3522, doi:10.1002/2017WR020362. 

Engel, J., E. Herrmann, and T. Gasser (1994), An iterative bandwidth selector for kernel estimation of densities and their derivatives, J. 

Nonparametr. Stat., 4(1), 21–34, doi:10.1080/10485259408832598. 

Fernàndez-Garcia, D., and X. Sanchez-Vila (2011), Optimal reconstruction of concentrations, gradients and reaction rates from particle 

distributions, J. Contam. Hydrol., 120–121(C), 99–114, doi:10.1016/j.jconhyd.2010.05.001. 

Garrels, R. M., and C. L. Christ (1965), Solutions, minerals, and equilibria, New York: Harper and Row. 

Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. Mcdonald (2000), MODFLOW-2000, the US Geological Survey modular ground-water 

model: User guide to modularization concepts and the ground-water flow process, U.S. Geol. Surv., 121. 

Härdle, W. (1991), Kernel Density Estimation, in Smoothing Techniques: With Implementation in S, pp. 43–84, Springer New York, New 

York, NY. 

Henri, C. V., and D. Fernàndez-Garcia (2014), Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-

tracking solution for first-order network reactions, Water Resour. Res., 50(9), 7206–7230, doi:10.1002/2013WR014956. 

Henri, C. V., and D. Fernàndez-Garcia (2015), A random walk solution for modeling solute transport with network reactions and multi-rate 

mass transfer in heterogeneous systems: Impact of biofilms, Adv. Water Resour., 86, 119–132, doi:10.1016/j.advwatres.2015.09.028. 

Herrera, P. A., J. M. Cortínez, and A. J. Valocchi (2017), Lagrangian scheme to model subgrid-scale mixing and spreading in heterogeneous 

porous media, Water Resour. Res., 53(4), 3302–3318, doi:10.1002/2016WR019994. 

Herrera, P. A., M. Massabó, and R. D. Beckie (2009), A meshless method to simulate solute transport in heterogeneous porous media, Adv. 

Water Resour., 32(3), 413–429, doi:10.1016/j.advwatres.2008.12.005. 

Huang, H., A. E. Hassan, and B. X. Hu (2003), Monte Carlo study of conservative transport in heterogeneous dual-porosity media, in Journal 

of Hydrology, vol. 275, pp. 229–241. 

Kinzelbach, W. (1988), The Random Walk Method in Pollutant Transport Simulation, in Groundwater Flow and Quality Modelling, edited 

by E. Custodio, A. Gurgui, and J. P. L. Ferreira, pp. 227–245, Springer Netherlands, Dordrecht. 

LaBolle, E. M., G. E. Fogg, and A. F. B. Tompson (1996), Random-walk simulation of transport in heterogeneous porous media: Local mass-

conservation problem and implementation methods, Water Resour. Res., 32(3), 583–593, doi:10.1029/95WR03528. 

Michalak, A. M., and P. K. Kitanidis (2000), Macroscopic behavior and random-walk particle tracking of kinetically sorbing solutes, Water 

Resour. Res., 36(8), 2133–2146, doi:10.1029/2000WR900109. 

Morshed, J., and J. J. Kaluarachchi (1995), Critical assessment of the operator-splitting technique in solving the advection-dispersion-reaction 

equation: 2. Monod kinetics and coupled transport, Adv. Water Resour., 18(2), 101–110, doi:10.1016/0309-1708(95)00002-Z. 

Nagy, A. M., G. Mourot, B. Marx, G. Schutz, and J. Ragot (2009), Model structure simplification of a biological reactor, IFAC Proc. Vol., 

42(10), 257–262, doi:10.3182/20090706-3-FR-2004.00043. 

Nancollas, G. H. (1979), The growth of crystals in solution, Adv. Colloid Interface Sci., 10(1), 215–252, doi:10.1016/0001-8686(79)87007-

4. 

Parkhurst, D. L., and L. Wissmeier (2015), PhreeqcRM: A reaction module for transport simulators based on the geochemical model 

PHREEQC, Adv. Water Resour., 83, 176–189, doi:10.1016/j.advwatres.2015.06.001. 

Paster, A., D. Bolster, and D. A. Benson (2013), Particle tracking and the diffusion-reaction equation, Water Resour. Res., 49(1), 1–6, 

doi:10.1029/2012WR012444. 

Paster, A., D. Bolster, and D. A. Benson (2014), Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion-

reaction equation with stochastic initial conditions, J. Comput. Phys., 263, 91–112, doi:10.1016/j.jcp.2014.01.020. 

Pedretti, D., and D. Fernàndez-Garcia (2013), An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from 

particle distributions, Adv. Water Resour., 59, 52–65, doi:10.1016/j.advwatres.2013.05.006. 

Rahbaralam, M., D. Fernàndez-Garcia, and X. Sanchez-Vila (2015), Do we really need a large number of particles to simulate bimolecular 

reactive transport with random walk methods? A kernel density estimation approach, J. Comput. Phys., 303, 95–104, 

doi:10.1016/j.jcp.2015.09.030. 

Riva, M., A. Guadagnini, D. Fernandez-Garcia, X. Sanchez-Vila, and T. Ptak (2008), Relative importance of geostatistical and transport 

models in describing heavily tailed breakthrough curves at the Lauswiesen site, J. Contam. Hydrol., 101(1–4), 1–13, 

doi:10.1016/j.jconhyd.2008.07.004. 

Salamon, P., D. Fernàndez-Garcia, and J. J. Gómez-Hernández (2007), Modeling tracer transport at the MADE site: The importance of 

heterogeneity, Water Resour. Res., 43(8), doi:10.1029/2006WR005522. 

Salamon, P., D. Fernàndez-Garcia, and J. J. Gómez-Hernández (2006), Modeling mass transfer processes using random walk particle tracking, 

Water Resour. Res., 42(11), doi:10.1029/2006WR004927. 

Salamon, P., D. Fernàndez-Garcia, and J. J. Gómez-Hernández (2006), A review and numerical assessment of the random walk particle 

tracking method, J. Contam. Hydrol., 87(3–4), 277–305, doi:10.1016/j.jconhyd.2006.05.005. 

Sánchez-Vila, X., and J. Solís-Delfín (1999), Solute transport in heterogeneous media: The impact of anisotropy and non-ergodicity in risk 

assessment, Stoch. Environ. Res. Risk Assess., 13(5), 365–379, doi:10.1007/s004770050056. 

Schmidt, M. J., S. Pankavich, and D. A. Benson (2017), A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions, J. 

Comput. Phys., 336, 288–307, doi:10.1016/j.jcp.2017.02.012. 

Siirila-Woodburn, E. R., D. Fernàndez-Garcia, and X. Sanchez-Vila (2015), Improving the accuracy of risk prediction from particle-based 

breakthrough curves reconstructed with kernel density estimators, Water Resour. Res., 51(6), 4574–4591, doi:10.1002/2014WR016394. 

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis. Chapman and Hall. 1986. 

Simpson, M. J., and K. A. Landman (2007), Analysis of split operator methods applied to reactive transport with Monod kinetics, Adv. Water 

Resour., 30(9), 2026–2033, doi:10.1016/j.advwatres.2007.04.005. 



 WE-NEED- WatEr NEEDs, availability, quality and sustainability   
 

30 

Stößel, D., and G. Sagerer (2006), Kernel Particle Filter for Visual Quality Inspection from Monocular Intensity Images, in Pattern 

Recognition: 28th DAGM Symposium, Berlin, Germany, September 12-14, 2006. Proceedings, edited by K. Franke, K.-R. Müller, B. 

Nickolay, and R. Schäfer, pp. 597–606, Springer Berlin Heidelberg, Berlin, Heidelberg. 

Takeda, H., S. Farsiu, and P. Milanfar (2007), Kernel Regression for Image Processing and Reconstruction, IEEE Trans. Image Process., 

16(2), 349–366, doi:10.1109/TIP.2006.888330. 

Tartakovsky, A. M., and P. Meakin (2005), A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and 

the two-dimensional Rayleigh–Taylor instability, J. Comput. Phys., 207(2), 610–624, doi:10.1016/j.jcp.2005.02.001. 

Tartakovsky, A. M., P. Meakin, T. D. Scheibe, and R. M. Eichler West (2007), Simulations of reactive transport and precipitation with 

smoothed particle hydrodynamics, J. Comput. Phys., 222(2), 654–672, doi:10.1016/j.jcp.2006.08.013. 

Tompson, A. F. B. (1993), Numerical simulation of chemical migration in physically and chemically heterogeneous porous media, Water 

Resour. Res., 29(11), 3709–3726, doi:10.1029/93WR01526. 

Tompson, A. F. B., and L. W. Gelhar (1990), Numerical simulation of solute transport in three???dimensional, randomly heterogeneous porous 

media, Water Resour. Res., 26(10), 2541–2562, doi:10.1029/WR026i010p02541. 

Tompson, A. F. B., A. L. Schafer, and R. W. Smith (1996), Impacts of physical and chemical heterogeneity on cocontaminant transport in a 

sandy porous medium, Water Resour. Res., 32(4), 801–818, doi:10.1029/95WR03733. 

Tsang, Y. W., and C. F. Tsang (2001), A particle-tracking method for advective transport in fractures with diffusion into finite matrix blocks, 

Water Resour. Res., 37(3), 831–835, doi:10.1029/2000WR900367. 

van Breukelen, B. M. (2003), Natural Attenuation of Landfill Leachate:: a Combined Biogeochemical Process Analysis and Microbial Ecology 

Approach, Ipskamp. 

Wen, X.-H., and J. J. Gómez-Hernández (1996), The Constant Displacement Scheme for Tracking Particles in Heterogeneous Aquifers, 

Ground Water, 34(1), 135–142, doi:10.1111/j.1745-6584.1996.tb01873.x. 

Willmann, M., G. W. Lanyon, P. Marschall, and W. Kinzelbach (2013), A new stochastic particle-tracking approach for fractured sedimentary 

formations, Water Resour. Res., 49(1), 352–359, doi:10.1029/2012WR012191. 

Wu, J., and Z. Li (2007), Density-Functional Theory for Complex Fluids, Annu. Rev. Phys. Chem., 58(1), 85–112, 

doi:10.1146/annurev.physchem.58.032806.104650. 

Yue, P., J. J. Feng, C. Liu, and J. I. E. Shen (2004), A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid 

Mech., 515, 293–317, doi:10.1017/S0022112004000370. 

Zhang, R., S. Hu, and X. Zhang (2006), Experimental Study of Dissolution Rates of Fluorite in HCl--H2O Solutions, Aquat. Geochemistry, 

12(2), 123–159, doi:10.1007/s10498-005-3658-3. 

Zhang, Y., and D. A. Benson (2008), Lagrangian simulation of multidimensional anomalous transport at the MADE site, Geophys. Res. Lett., 

35(7), doi:10.1029/2008GL033222. 

 

 
 


