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Deliverable summary 
This document complements Deliverable 1.4a and provides conclusive results obtained in 
the context of hydrogeological characterization of the two field sites analyzed in the project: 
Cremona and Bologna Aquifer systems, located in the Po Plain, Northern Italy. For the 
Cremona site, we explore the relative influence of parametric uncertainties to steady-state 
hydraulic head distributions across the set of conceptual models considered by way of a 
moment-based Global Sensitivity Analysis, GSA, which takes into account the influence of 
uncertain parameters on multiple (statistical) moments of a given model output. This new 
methodology has been developed during the project. Due to computational costs, moment-
based indices are obtained numerically through the use of a model-order reduction technique 
based on the polynomial chaos expansion approach. We then use results of GSA to drive 
calibration of model parameters including the most influential hydraulic conductivity values 
of the geomaterials composing the aquifer and natural springs leakage coefficient. For the 
Bologna site, we investigate facies connectivity in a Monte Carlo (MC) framework, by 
relying on two sets of 100 realizations generated with two diverse geostatistical 
reconstruction techniques (SISIM and TPROGS). In particular, our goal is to evaluate 
quantitatively (i) the connectivity of the diverse facies in each individual realization, (ii) the 
variability of connectivity within a set of equally-likely facies distributions, and (iii) the 
extent at which the generation method affects facies connectivity. We investigate possible 
effects of connectivity on groundwater flow and parameter calibration. Finally, we take 
advantage of model identification criteria and a multi-model approach to compute hydraulic 
head estimates from all MC realizations.  
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1. Introduction 

This deliverable provides conclusive results obtained in the context of hydrogeological 
characterization of the two field sites analysed within the project: the Bologna and the Cremona 
Aquifer systems, representing different but complementary realities. The Bologna Aquifer is a 
key source of water for the metropolitan area of Bologna. The Cremona Aquifer is located in 
the so-called Springs Belt. Natural high-quality water springs are the main supply to agriculture 
and a key environmental driver. The Bologna and Cremona sites are archetypal of two distinct 
realities of alluvial aquifers, and can be considered representative of diverse environmental 
settings of Europe-wide interest.  

The deliverable is structured as follows: Section 2 provides the analysis performed for 
the Cremona site. The moment based Global Sensitivity Analysis (GSA) is described in Section 
2.1. Section 2.2 focuses on natural spring modelling and model calibration. 

Section 3.1 illustrates the results of the investigation of facies connectivity performed on 
the Bologna site. Section 3.2 describes the groundwater flow model and in Section 3.3 we 
discuss the effects of connectivity on the calibration of model parameters. In Section 3.4, we 
apply a multi-model approach to obtain hydraulic head estimates from all MC realizations. 

2. Cremona site 

The study area is part of the high-medium Alluvial Po Plain. It lies between the city of 
Bergamo (Northern Italy) and the confluence of the Adda and Serio rivers (see Figure 2.1 of 
Deliverable 1.4a). A key feature of the study area is the occurrence of high-quality water 
springs, which are the main supply to agriculture and a key environmental driver. 

In Deliverable 1.4a we developed a conceptual and a numerical model of the study area. 
In particular, on the bases of lithological data, we reconstructed the three dimensional 
distribution of facies within the aquifer by means of two geostatistical methods: the Composite 
medium approach (CM) and the Overlapping Continuum Approach (OC). Then, we analysed 
the impact of the uncertainty in (a) the conceptual model (the two variants of OC versus CM), 
(b) the boundary conditions and (c) the hydraulic parameters on the groundwater system 
response, as quantified in terms of steady-state hydraulic heads obtained at a set of 39 target 
locations, covering the full investigated area. This analysis has been performed by relying on 
two Global Sensitivity Analysis, GSA, classical methodologies: (a) a derivative-based 
approach, which rests on the Morris indices (Morris, 1991) and (b) a variance-based approach, 
based on the evaluation of the Sobol’ indices (Sobol, 1993, 2001).  

In the present document we further refined the results of Deliverable D1.4a by providing 
the outcomes of a novel moment-based GSA (Dell’Oca et al., 2017). These results allow to 
reach a more complete picture of the system response to variation of uncertain model 
parameters. The new metrics proposed by Dell’Oca et al. (2017), termed AMA indices, allow 
to quantify the relative contribution of each uncertain model parameter to the main features (as 
rendered by the statistical moments) of the probability density function of a model output, y. 
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One of the main findings of Dell’Oca et al. (2017) is that relying on classical variance-based 
GSA methods, with the implicit assumption that the uncertainty of y is fully characterized by 
its variance, can lead at best to an incomplete picture of the system response to model parameter 
uncertainties. In Section 2.2 we focus on model calibration. In particular, we calibrate natural 
spring leakage coefficient as well as the most influent hydraulic parameter for each 
conceptualization using available measurements of hydraulic head and springs flow rate. 
 

2.1 Moment-based Global Sensitivity Analysis 

We analyze the impact of the uncertainty in the conceptual model (CM and two variants 
of the OC, according to which hydraulic conductivity is computed as a weighted arithmetic or 
geometric mean of the hydraulic conductivity of the five geomaterials composing the domain, 
see Deliverable 1.4a for details), boundary conditions and hydraulic parameters on the 
groundwater system response, as quantified in terms of steady-state hydraulic heads obtained 
at a set of 39 wells, whose locations are depicted in Figure 2.1, covering the full investigated 
area. At the same locations hydraulic head measurements are available. These latter will be 
used during model calibration (Section 2.2). 

 
Figure. 2.1. Locations at which GSA metrics are evaluated and boundary conditions of the 

numerical model.  
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In order to perform moment-based GSA, as discussed in Deliverable 1.4a, the uncertain 

model inputs associated with (a) hydraulic conductivity values ( ik , with i = 1,…, 5) of the five 

geomaterials composing the subsurface, (b) the total flow rate entering the domain from the 
Northern boundary, and (c) the Dirichlet boundary conditions set along the rivers are collected 
in a N-dimensional vector p. Entries of the latter are independent and identically distributed 

(i.i.d.) random variables, ip  (with i = 1,…, N; N = 7), each characterized by a uniform 

probability density function, pdf. The (random) parameter space is then defined as 
min max,   Γ p p  where minp  and maxp  indicate vectors respectively containing lower ( min

ip ) 

and upper ( max
ip ). The choice of min

ip  and max
ip  (i = 1,…,5) is based on typical hydraulic 

characteristics of each geomaterial class. With reference to boundary conditions, Rametta 

(2008) estimated a total incoming flow rate in the area of interest equal to 6p  = 9.65 m3/s. 

Since this estimated value is affected by uncertainty and the spatial distribution of 6p  is 

unknown, we consider the incoming flow rate as uniformly distributed along the Northern 

domain boundary and set min
6 60.5p p   and max

6 61.5p p   (resulting in a coefficient of 

variation of about 30%). The support of the Dirichlet boundary condition ( 7p ) has been defined 

considering that the river stage may vary between the river bottom and the banks’ elevation. A 
list of selected uncertain parameters and associated range of variability is reported in Table 2.2 
of Deliverable 1.4a. 

 

2.1.1 Methodology 
The AMA indices (introduced by Dell’Oca et al., 2017) allow quantifying the expected 

variation of a given statistical moment M[f] of the pdf of f(p). These are defined as 
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Here, AMA
ipM  (2.1) and 

1
AMA ,...,

sp pM  (2.2) correspond to the AMA indices associated 

with a given statistical moment M and related to variations of only ip  or considering 

interactions among  1,..., sp p , respectively; 
pi

  is the marginal pdf of ip , 
1 ,..., sp p   being 

the joint pdf of  1,..., sp p ; and 1[ | ,..., ]sM f p p  indicates conditioning of the (statistical) 

moment M on known values of parameters 1,..., sp p . Note that AMA
ipV , i.e., the AMA index 

related to the variance (M = V) of  f p , coincides with the principal Sobol’ index 
ipS  only if 

the conditional variance, [ | ]iV f p  is always (i.e., for each value of ip ) smaller than (or equal 

to) its unconditional counterpart  V f . 

The numerical evaluation of AMA indices can be time consuming and can become 
unfeasible in complex scenarios, such as the one here considered. These metrics are evaluated 
relying on a surrogate model based on the generalized Polynomial Chaos Expansion (gPCE) 
(Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maȋtre and Knio, 2010). This 

technique consists in approximating  f p  by a linear combination of multivariate Legendre 

polynomials, i.e., ( ) x p  
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where  1,..., NN
Nx x x  is a multi-index expressing the degree of each univariate 

polynomial, , ( )
ii x ip ;  x  are the gPCE coefficients; p  is the pdf of p; i  contains all indices 

such that only the i-th component does not vanish; ,i j  contains all indices such that only the 

i-th and j-th components are not zero, and so on.  
 

2.1.2 Results and discussion 
The computational cost linked to the construction of the gPCE depends on the order of 

truncation, w, of the series in (2.3). In this study, we first compare the results obtained up to w 
= 4, requiring 2437 runs of the full flow model. Figure 2.2 depicts (i) the AMA indices linked 
to the mean, AMA

ipE  (Figure 2.2a), variance, AMA
ipV  (Figure 2.2b), and skewness, 

AMA
ip  (Figure 2.2c), computed at all 39 target locations for CM and considering all seven 

uncertain model inputs ip . Note that each well is associated with an Identification Number 

(ID) which increases from North to South to facilitate the interpretation of the results (see also 
Figure 2.1). Corresponding results for settings associated with the OC modeling strategies 
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(termed as OC_A and OC_G, when considering the arithmetic or geometric averaging operator, 
respectively) are depicted in Figures 2.3 and 2.4.  

For all conceptual models AMA
ipE  tends to decrease from North to South (see Figures 

2.2a, 2.3a and 2.4a). Indices AMA
ipE , quantifying the impact of uncertain inputs on the mean 

hydraulic heads, are in general very low for OC_A and CM while they can be significant (> 

20%) for OC_G. Results obtained with the total Sobol indices 
i

T
pS  (see Deliverable D1.4a) and 

AMA
ipV  appear to be not always consistent for CM model. For example, while the analysis of 

i

T
pS  (See Figure 2.11c of Deliverable 1.4a) would suggest to neglect the impact of 2k , 4k , and 

6p  on the variance of model outputs in CM, index AMA
ipV  (Figure 2.2b) indicates that the 

uncertainty of these model inputs can influence the target model output. 
In order to grasp the reasons underpinning this finding, we plot in Figure 2.5a-c the 

conditional variance iV f p    versus ip  at a selected observation wells (ID 32), together with 

its unconditional counterpart. Here, the interval of variation of each model parameters has been 
normalized to span the range [0, 1] for graphical representation purposes. Conditional moments 
are obtained via 2 × 106 runs of the gPCE-based surrogate model. 

We note that 2V f k   , 4V f k   , and 6V f p    for CM (Figure 2.5a) can be smaller 

or higher than their unconditional counterparts, depending on the conditioning value ip . This 

behavior explains why the Sobol’ sensitivity measure does not allow to completely detect the 

effect of 2k , 4k , and 6p  on the model output variance at some observation wells. A similar 

conclusion can be drawn from Figures 2.4c and Figure 2.13c of Deliverable 1.4a, with 

reference to parameters 2k  and 4k  and model OC_G. Conversely, AMA
ipV  and 

i

T
pS  exhibit 

very consistent features for OC_A (Figures 2.3b and Figure 2.12c of Deliverable 1.4a), 

identifying 3k , 5k , and 7p  as the most influential parameters. Figure 2.5b reveals that 

5V f k    and 7V f p    are always smaller than the unconditional variance and, at this well 

(ID 32), only parameters 5k  and 7p  are influential to the variance of the target output for OC_A 

as shown in Figure 2.3b. 
The degree of symmetry of the pdfs of hydraulic heads, as driven by the skewness, 

strongly depends on the considered conceptual model and on the selected observation well. In 
most of the observation wells the unconditional pdf is right-skewed for CM and OC_G while 
being left-skewed or symmetric for OC_A (not shown). As an example, the unconditional and 
conditional skewness obtained for the three considered models via 2 × 106 runs of the gPCE-
based surrogate model are depicted in Figure 2.5d-f at observation well (ID 32). Conditioning 
on model parameters affects the shape of the pdf, whose degree of symmetry can markedly 

depend on the conditioning value of ip . 



 WE-NEED- WatEr NEEDs, availability, quality and sustainability   
 
 

8 
 

 

 

Figure 2.2. CM approach. a) AMA
ipE , b) AMA

ipV  and c) AMA
ip  indices evaluated at the 39 

locations depicted in Figure 2.1. 

 

Figure 2.3. OC_A approach. a) AMA
ipE , b) AMA

ipV  and c) AMA
ip  indices evaluated at the 39 

locations depicted in Figure 2.1. 
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Figure 2.4. OC_G approach. a) AMA
ipE , b) AMA

ipV  and c) AMA
ip  indices evaluated at the 39 

locations depicted in Figure 2.1. 

 

Figure 2.5. Conditional a-c) variance iV f p    and d-e) skewness if p     versus normalized ip  

at a selected observation well (ID 32; see Figure 2.1) for the conceptual models considered. The 
corresponding unconditional moments (horizontal black lines) are also shown. Results are obtained 
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via 2 × 106 runs of the gPCE-based surrogate model subdividing each parameter interval into eight 
uniform bins. 

 

In order to provide an overall assessment of model parameter impacts on hydraulic heads 
across the domain, we compute the average of each sensitivity index across all 39 locations 

considered (the averaging operator is hereafter denoted with symbol ). In this analysis we 

consider also Morris, *

ip , and Sobol, 
i

T
pS , metrics evaluated in Deliverable 1.4a. Figure 2.6a 

depicts 
i

T
pS  versus *

ip  for the model conceptualizations analysed. These two traditional 

sensitivity measures display the following consistent trends (only a few minor differences in 
term of ranking of parameter importance can be detected): (i) hydraulic head for all conceptual 

models are significantly affected by the uncertainty of 3k  and 5k , while the effects of 2k  and 

4k  are always negligible; (ii) the strength of the influence of the uncertainty of 1k  depends on 

the conceptual geological model adopted and is negligible in OC_A; (iii) CM and OC_A are 

more affected by the uncertainty in the Dirichlet (as quantified by 7p ) than in the Neumann 

(i.e., 6p ) boundary condition, the opposite behavior being observed for OC_G. 

The scatterplot of AMA
ipV  versus AMA

ipE  values is depicted in Figure 2.6b. We note 

that mean values of hydraulic heads in OC_G are more affected by uncertainty in a few selected 

parameters ( 1k , 3k , 5k , and 6p ) with respect to what can be observed for OC_A and CM (note 

the isolated cluster of green symbols, diamonds, in Figure 2.6b). Conversely, hydraulic head 
variance is affected by uncertainty of input parameters in a similar way for the three considered 

models (i.e., all three models lead to comparable values of AMA
ipV ). Comparing 

AMA
ipV  and 

i

T
pS  (Figure 2.6c), enables us to further support our previous observation 

that the impact of some parameters (e.g., 6p , 4k  and 2k  for CM and 4k  and 2k  for OC_G) on 

output hydraulic head variance cannot be fully appreciated by the 
i

T
pS  indices. Figure 2.6d 

depicts AMA
ipV  versus AMA

ip . We note that all points tend to follow a linear trend of 

unit slope for CM and OC_A, suggesting that uncertainty on model parameters affect variance 
and skewness of output hydraulic heads in a similar way. Otherwise, considering OC_G we 

note that the influence of some parameters ( 1k , 5k  and 6p ) decreases for increasing order of 

the (statistical) moment of the output head distribution. 

2.1.3 Conclusions 
In Deliverable D1.4a and in the present document we compare a set of Global Sensitivity 

Analysis (GSA) approaches to evaluate the impact of conceptual geological model and 
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parametric uncertainty on groundwater flow features in a three-dimensional large scale 
groundwater system. Our work leads to the following major conclusions. 

1. Albeit being based on differing metrics and concepts, the three GSA approaches 
analyzed lead to similar and (generally) consistent rankings of parameters which are 
influential to the target model outcomes at the set of investigated locations. Otherwise, 
the choice of the conceptual model employed to characterize the lithological 
reconstruction of the system affects the degree of influence that uncertain parameters 
can have on modeling results. 

2. When considering the overall behavior of model responses across the set of observation 
points, all GSA indices suggest that geomaterials constituting a relatively modest 

fraction of the aquifer (~1015%) are influential to hydraulic heads only if they are 
associated with large conductivities. Otherwise (i.e., if their conductivity has a low to 
intermediate value), these geomaterials are not influential in any of the geological 
models considered. 

3. The impact of very low conductivity geomaterials (such as those associated with facies 
No. 1 in Table 2.1 of Deliverable 1.4a) depends on the conceptual model adopted when 
their volumetric fraction is significant (~30%). These geomaterials do not influence the 
variability of hydraulic heads computed through the OC_A model (Overlapping 
Continuum scheme associated with arithmetic averaging of geomaterial 
conductivities). Otherwise, they are seen to be remarkably influential for the CM 
(Composite Medium) model and the OC_G (Overlapping Continuum scheme 
associated with geometric averaging of geomaterial conductivities) model. 

4. Uncertainty in the Neumann boundary condition plays only a minor role with respect 
to the Dirichlet boundary condition, which strongly controls variability of hydraulic 
head, in the CM and OC_A models. The opposite behavior is observed for the OC_G 
approach. 

5. The moment-based indices AMAE, AMAV, and AMAγ (which quantify the impact of 
model parameters on the mean, variance, and skewness of the pdf of model outputs, 
respectively) suggest that all model parameters affect in a similar way mean, variance 
and skewness of hydraulic heads for the CM and OC_A approaches. When considering 
the OC_G conceptualization, we note that some of the influential parameters (i.e., the 
largest/smallest geomaterial conductivities, and Neuman boundary conditions) 
influence the mean of hydraulic heads more strongly than its variance or skewness. 

6. The degree of symmetry of the pdf of hydraulic heads, as quantified by the skewness, 
depends on the considered conceptual model and varies across the domain. 
Conditioning on model parameters markedly affects the shape of the pdf of heads, 
whose degree of symmetry can strongly depend on conditioning parameter values. 

7. Evaluation of the AMAV indices for the CM and OC_G conceptualizations suggests 
that the importance of the influence of some parameters on head variance is 
underrepresented by the Sobol’ indices. This is related to our finding that the variance 
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of the model output conditional on these parameters is not always smaller that its 
unconditional counterpart. This (a) hampers the ability of the Sobol’ indices to 
completely detect the effect of these parameters on the model output variance, and (b) 
leads to different ranking of model parameters considering either the AMAV or the 
Sobol’ metrics. 

 
Our results form the basis for the development of an efficient parameter estimation that 

is described in Section 2.2. Parameters which have been identified as noninfluential to model 
outcomes (as expressed through their key statistical moments) can be neglected in the model 
calibration process and fixed to given values. 

 
 

 

Figure 2.6. Scatterplots of sensitivity indices averaged across all 39 target locations. a) averaged total 

Sobol indices 
T
iS  versus averaged scaled Morris Index 

*
i ; b) AMA

ipV  versus AMAE
ip

; c) AMA
ipV  versus 

T
iS ; d) AMA

ipV  versus AMA
ip . Blue circles, red triangles, and 
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green diamonds correspond to results obtained via the CM, OC_A and OC_G conceptual models, 
respectively. 

 

2.2 Natural spring modelling and model calibration 

According to the results of the GSA, in Deliverable 1.4a, we calibrate parameters k1, k3 
and k5 for CM and OC_G models and k3, k5 for OC_A. For each conceptual model, insensitive 
parameters are fixed to values consistent with the geological features of the corresponding 
classes, as reported in Table 2.5 of Deliverable 1.4a. As calibration data, we considered yearly-
averaged hydraulic heads collected at each observation well during year 2015 (location of these 
wells is reported in Figure 2.1 and Annex I). 

Here, we focus on the calibration of an additional model parameter which is the spring 
leakage coefficient. The latter, as we detail below, is the main parameter affecting the spring 
outflow rate predicted by the numerical models. 

 

2.2.1 Methodology 
A key feature of the Cremona aquifer system is the presence of high quality water 

springs. In the numerical model these springs are simulated as drains. We consider a set of 138 
springs (the list is reported in Annex II). The specific outflow-rate per unit area of the i-th drain, 
qd,i [LT-1], is modelled as 

 0, 0,
,

0,0

d
i i i i

d i

i i

K
h h h h

q e
h h

   
 

  (2.3) 

where hi [L] and h0,i [L] are, respectively, the hydraulic head and the elevation of ground level, 
at the i-th drain, Kd [LT-1] and e [L] being are the hydraulic conductivity and the thickness of 
the drain bed. Since no information are available about the spatial variability of Kd and e, they 
are assumed constant (in space). Quantities Kd and e allow to evaluate leakage coefficient ld [T-

1]  

d dl K e   (2.4) 

The total discharge, Qd [L3T-1] outflowing from the whole set of drains in the model 
can be evaluated as: 

,
1

DN

d d i
i

Q A q


   

where A [L2] is the planar area of the drain and ND is the number of drains considered. The 
estimation of the leakage coefficient is cumbersome (Doppler et al., 2007). It can be locally 
measured (Kaleris, 1998) but it is usually calibrated making use of hydraulic head data and/or 
flow rate measurements (when available). 

For the Cremona aquifer the following measurements of spring flow rates are available: 
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a) A campaign of Consorzio della Media Pianura Bergamasca, CMPB, (Maione et al., 
1991) recorded discharge measurements at 35 sections of channels collecting water 
flowing out from the springs within the study area (see Fig. 2.7). Measurements have 
been performed during the years 1989-1990 on a (approximately) bi-monthly basis. The 
list of the total discharge measurements over the 35 sections is reported in Annex III. 

b) Flow rate measurements performed at four locations along the three main channels 
(named Misana, Quarantina and Acquarossa). Measurements have been collected on a 
(approximately) weekly basis, during the irrigation period, from 31/03/2009 to 
2/09/2009 from Consorzio Irrigazioni Cremonesi and Consorzio Adda-Serio. The 
complete set of available measurements is reported in Annex III. 
 

The first set of spring flow rate measurements (a) is representative of a significantly larger area 
of the investigated domain with respect to the second set (b). For this reason, set (a) has been 
used to calibrate ld by means of a Maximum Likelihood method (described in Section 2.4.1 of 
Deliverable 1.4a). We assume that only springs located upstream of the measurement sections 
contribute to the measured flow rate. 
The second set of measurement (b) has been adopted, at the end of the inversion procedure, for 
validation purposes. 

The calibration has been performed according to the following iterative procedure:  
i) hydraulic conductivity values are calibrated using hydraulic head measurements 

considering a first attempt value of the leakage coefficient (this step has been 
performed in Deliverable 1.4a); 

ii) leakage coefficient is calibrated using the spring flow rate measurements 
collected by CMPB (1989-1990), fixing hydraulic conductivities at the optimal 
values obtained at the previous step; 

iii) hydraulic conductivity values are re-calibrated using the optimal leakage 
coefficient obtained at point (ii). 

The method converges in few steps leading to optimal values of hydraulic conductivity and 
leakage coefficient obtained on the basis of both hydraulic head and spring flow rate 
measurements. 

In Deliverable 1.4a, during the calibration of hydraulic conductivity values, Dirichlet 
and Neumann boundary conditions investigated during the sensitivity analysis were fixed to 
three selected constant values representing the lower bound, medium behavior and upper bound 
of their range of variability (see Table 2.3 of Deliverable 1.4a). The considered sets of boundary 
conditions have been called BC1, BC2 and BC3. 
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Figure 2.7. a) Location of natural spring and spring flow rate measurements within the study area. A 
zoom-in of the measurement locations is also reported for: b) Misana, c) Quanrantina and d) 

Acquarossa (upstream and downstream) channel. 

 

2.2.2 Results and discussion 
Table 2.1 reports the value of the leakage coefficient at the end of the inversion process 

for the three conceptual models, i.e. CM, OC_A and OC_G. These results are associated with 
boundary conditions set BC3 (i.e. p6 = 19.30 m3/s and p7 = 3.0 m) corresponding to the best 
optimization results for CM and OC_A (see Table 2.4 of Deliverable 1.4a). Considering OC_G, 
results associated with BC3 allow to obtain the best match between total spring flow rate 
measured and predicted by the model. For the three investigated model conceptualizations the 
spring leakage coefficient assumes value consistent with the study of Doppler et al. (2007) 
which calibrate leakage coefficients in the context of rivers-aquifer interaction. The estimated 
leakage coefficients are similar in the three models, the highest value being associated with the 
CM approach. All the three model approaches can render values of Qd closed to the mean 
measured counterpart (= 14.62 m3/s). 
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Parameter Symbol CM OC_A OC_G Unit 

Leakage coefficient ld  0.15 0.12 0.11 day-1 

Leakage coefficient ld  1.7210-6 1.3310-6 1.2510-6 s-1 
Total spring flow rate Qd 14.73 14.61 14.64 m3 s-1 

Table 2.1. Values of leakage coefficient and simulated total spring discharge. 

Values of J (squared difference between measured and predicted hydraulic head), 2
h  

(ML estimates of the variance of measurement errors of h) and model discrimination criteria 
NLL, AIC, AICc, BIC, KIC (see Deliverable D1.4a for details) evaluated at the end of the 
inversion procedure for the three conceptual models are reported in Table 2.2. Minima amongst 
all models are in bold. Values of J converge to a smaller value in CM. Model identification 
criteria tend to favour OC_A, based on the principle of parsimony, because it has less 
parameters with respect all remaining models. Our results confirm what we found in 
Deliverable 1.4a where we note that OC_A seems to provide a more robust model with respect 
to the OC_G approach and the CM model. 
 

 CM OC_A OC_G 

J 1529 1558 1587 
2
h  39.21 39.95 40.69 

NLL 253.8 254.5 255.2 
AIC 259.8 258.5 261.2 
AICc 260.4 258.8 261.9 

BIC 264.8 261.8 266.2 

KIC 256.9 256.4 260.5 

Table 2.2. Inversion statistic for the three conceptual models and model identification criteria. 
Minima amongst all models are in bold. 

 
Conductivity estimates of each facieas are reported in Table 2.3 for the three conceptual 

models. The estimation error standard deviation, SD, calculated according to the ML 
methodology, is also reported for all estimated parameters. The hydraulic conductivity 
estimated values are consistent with the geological features of the classes and are very close to 
those obtained in Deliverable 1.4a before the calibration of leakage coefficient. For all 
conceptual models, the lowest value is associated with the clay, silt and fine sand materials, 
corresponding to Classes 1 and 2, while the largest conductivities are related to gravel material 
and the fractured conglomerate, corresponding to Classes 3 and 5. Figure 2.8 depicts simulated 
versus observed hydraulics heads for the three calibrated models.  
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 CM OC_A OC_G 
 k  SD k (m/s) SD k (m/s) SD 

k1 (m/s) 5.8110-5 2.9510-5 1.00 10-6 - 9.3410-5 1.6810-5 
k2 (m/s) 1.00 10-4 - 1.00 10-4 - 1.00 10-4 - 
k3 (m/s) 1.1010-2 4.3110-3 1.8410-2 4.9110-3 5.4410-2 2.4910-2 
k4 (m/s) 1.00 10-5 - 1.00 10-5 - 1.00 10-5 - 
k5 (m/s) 4.7110-3 1.7910-3 4.4410-3 1.8810-3 3.2710-2 1.5310-2 

Table 2.3: Parameter estimates and related estimation error standard deviation for the three 
conceptual models analysed. 

 
Figure 2.8. Simulated versus observed hydraulic head at monitoring stations. Simulated heads have 

been obtained with the a) CM, b) OC_A and c) OC_G approaches. 

 

 

2.2.3 Model validation 
Model validation is performed upon comparing the local measured values of spring flow 

rate (Acquarossa upstream and downstream, Quarantina and Misana) not used in the inversion 
procedure against the outflow rate predicted on the basis of the best set of parameters identified 
in the previous Section for the three conceptual models (see Figure 2.7 b-d for the location of 
the validation points). Figure 2.9 depicts measured and predicted flowrates at the four locations 
adopted during the validation procedure. The flow rates measured at Acquarossa upstream and 
downstream are closely reproduced by their model estimates, while some discrepancies can be 
observed among measured and estimated values of Qd at Misana and Quarantina sections. 

This finding can be related to the following reasons: (i) our models provide an estimate 
of the mean annual flow rate at the springs while measurements have been collected only during 
the irrigation period; (ii) heterogeneity on the drain characteristics are neglected. 

However, we note that the developed model is accurate in reproducing the behavior of 
the main flow feature of the site (e.g., hydraulic heads and mean annual total discharge at the 
drains). 
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Figure 2.9. Measured and predicted spring flow rate at four locations (Acquarossa upstream, 

Acquarossa downstream, Misana and Quarantina). 
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3. Bologna site  

The Bologna aquifer system is located in the medium alluvial Po Plain. The investigated 
domain extends over 20 × 23 km2 in the horizontal plane and from -450 m to 100 m a.s.l. along 
the vertical direction. The system is discretized into Ntot = 40 × 46 × 110 cells of uniform size 
of 500 m × 500 m × 5 m. Lithological data available from more than 1300 boreholes allowed 
to identify 4 main categories within the area: clay, gravel, silt and sand, with volumetric fraction 

1 0.523p  , 2 0.281p  , 3 0.133p   and 4 0.063p   respectively. As detailed in Deliverable 

1.4a, we apply two diverse geostatistical reconstruction techniques to describe the architecture 
of the aquifer system: SISIM, a classic sequential-indicator approach (Deutsch and Journel, 
1992) and TPROGS, a transition-probability based method (Carle and Fogg, 1996, 1997). The 
two techniques are compared in a Monte Carlo (MC) framework, by relying on two sets of n = 
100 realizations conditioned on lithological data. In Deliverable 1.4a, we computed ensemble 
indicator variograms and transiograms evaluated over each set of MC realizations. We 

observed that: (i) all ensemble variograms, Ik
 , and transiograms, jkt , converge to their 

theoretical values, respectively (1 )k kp p  and kp ; (ii) for all facies, TPROGS-based ensemble 

variograms are characterized by larger horizontal and vertical ranges compared to their SISIM 
counterparts; (iii) TPROG-based ensemble transiograms reach the plateau for larger separation 
distance with respect to SISIM counterparts. Figures 3.1 and 3.2 depict facies distributions over 
a vertical cross section in one realization generated with SISIM and TPROGS respectively. A 
qualitative comparison of these figures reveals that the SISIM simulations are characterized by 
a more fragmented facies distribution than TPROGS counterparts. To investigate this aspect 
quantitatively, in the following sub section we characterize the connectivity of facies in our 
systems. 

 
Figure 3.1. Facies distribution along a vertical cross section in one realization generated with SISIM. 
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Figure 3.2. Facies distribution along a vertical cross section in one realization generated with 

TPROGS. 

3.1 Investigation of connectivity metrics 

Predictions of flow and transport processes in aquifer systems are critically affected by 
their intrinsically heterogeneous nature (Neuman, 2008; Neuman and Di Federico, 2003), 
including the spatial arrangement of the hydraulic properties, a prominent role being played by 
a feature typically denoted as connectivity (Knudby and Carrera, 2005, Renard and Allard, 
2013). A formal and unambiguous definition of connectivity is still lacking. Connectivity can 
be regarded as a measure of the presence of preferential flow paths that enable fast flow and 
transport throughout the system. Understanding the mechanisms driving flow to concentrate in 
high-velocity channels is key for proper prediction of first arrival times of dissolved chemicals 
at critical targets (Cvetkovic et al., 2014; Henry et al., 2015; Zinn and Harvey, 2003), with 
direct implications in environmental risk assessment. In this context, our goal is to evaluate 
quantitatively (i) the connectivity of the diverse facies in each realization, (ii) the variability of 
connectivity within a set of equally-likely facies distributions, and (iii) the extent at which the 
generation method affects facies connectivity.  

In order to define any connectivity metric, some basic definitions must be introduced. 
Our three-dimensional domain is discretized by a regular cubic grid, in which each cell has 6 

neighbors. Let k  be the subset of grid cells that are associated with the k-th geomaterial. Two 

cells, Ax  and Bx , of k  are said to be connected if there exist a sequence of neighboring cells 

from Ax  to Bx  that is completely included in k . A group of connected cells is called a 

“cluster”. A first set of connectivity metrics can be inferred from the analysis of clusters. As 

illustrated by Lee et al. (2007), useful indicators are: (i) CN , the total number of clusters 
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identified within the system; (ii) maxC , the number of cells in the largest cluster divided by the 

total number of cells of the domain, Ntot; (iii) IN , the number of isolated cells, i.e., cells 

belonging to k  not connected to any other cell of k . These indices have been computed for 

each geomaterial (or category) and in each realization for both generation methods. The results 
are reported in Figure 3.3 in the form of boxplots, to visualize both average values and ranges 

of variation of the indices. Figure 3.3a collects the boxplots of CN , highlighting that all facies 

are considerably more fragmented in SISIM than in TPROGS. This holds in particular for 
gravel, whose average number of clusters differ by almost one order of magnitude between the 

two generation methods. Figure 3.3a also shows that, in SISIM, CN  is characterized by a wide 

variability and also by the presence of outliers in the distributions (depicted as red circles). The 

results obtained for maxC  are reported in Fig. 3.3b. The two facies with the largest volumetric 

fraction (clay and gravel) are characterized by considerably larger clusters with respect to the 

other two (silt and sand). It can be also noted that, with both methods, the mean value of maxC  

for clay is very close to its total volume fraction, 1p , indicating that this category is essentially 

made by one single cluster. The same holds for gravel in TPROGS-based realizations and, to 
a lesser extent, for the SISIM set. This denotes that, with the latter generation method, there is 
a non-negligible portion of gravel cells that are not connected to the predominant cluster. 

Moreover, as it can be observed comparing the boxplots of IN  (Fig. 3.3c), gravel has the largest 

number of isolated cells when we consider the SISIM set. This clarifies that gravel cells outside 
the main cluster are not connected with each other in SISIM simulations.  

As emphasized by Renard and Allard (2013) and references therein, connectivity metrics 
can be effectively interpreted in the framework of percolation theory. This theory was 
originally formulated for uncorrelated Bernoulli random fields defined on infinite domains 
(i.e., on grids extending over a distance much larger than the grid step): in any node of the grid, 
the field can be either 1 or 0 with probability p and (1-p) respectively. A single realization 

would hence be made by 1 , i.e., the set of grid cell where the field is equal to 1, and its 

complementary set, 0 . The basic principle of percolation theory is that there exists a critical 

value of p, called percolation threshold (pt), such that the probability for 1  to form a unique 

cluster is equal to 1 if tp p  and equal to 0 if tp p . The theory also allows to prove that the 

value of pt decreases with the increase of (i) the grid dimension and (ii) the number of neighbors 

of a grid cell. For a three-dimensional cubic grid with 6 neighbours, 0.31tp   (Stauffer and 

Aharony, 1992). 
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Figure 3.3. Boxplot of the connectivity indices (a) CN  (b) maxC  and (c) IN  computed for each 

category over all 100 realizations generated with SISIM (black and red symbols) and TPROGS (blue 
and cyan symbols). In (b), the proportion of each category in the domain is also indicated by 

horizontal dashed lines. 

Application of the percolation theory to our problem implies that there exists a threshold 
value of the volumetric proportion of a facies above which this facies is most likely made by a 
unique cluster spanning over the whole grid. Here we use the term “most likely” to indicate 
that the investigated domain differs from the one considered in the theoretical framework for 
being (i) finite and (ii) spatially correlated. As a consequence, the probability of occurrence of 
a percolating cluster is not a step function but increases gradually from 0 to 1 over a range of 

values of p centered on the theoretical tp  of the system. As illustrated by Hovadik and Larue 

(2007), this range gets wider as the domain departs from the theoretical conditions, i.e., as the 
number of grid cells decreases and as the facies correlation length increases. Moreover, as it 

can be intuitively seen, spatial correlation enhances connectivity, resulting in a decrease of tp  

below the theoretical value of 0.31. The results observed for the connectivity indices are 
consistent with this theoretical framework, since: (i) TPROGS set, which exhibits larger 
correlation lengths than SISIM counterparts for all categories, shows a higher degree of 

connectivity than SISIM, as measured by the smaller CN  and IN  values displayed; (ii) SISIM 

realizations are characterized by a larger variability in the category proportions   310O   with 

respect to TPROGS   510O  , which implies a higher variability in connectivity metrics; (iii) 

being the volumetric fraction of clay 1 tp p , this category has a probability 1  to form a 
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unique percolating cluster; (iv) silt and sand proportions, 3p  and 4p , are far below the 

percolation threshold and their correlation lengths are very short (< 5 cells, see Deliverable 
1.4a). So, for these categories it is extremely unlikely to form long clusters; (v) gravel is 

correlated over a long distance ( 10  cells). This makes its volumetric proportion, 2p , large 

enough for a percolating cluster to occur. However, the fact that 2p  is close to the percolation 

threshold results in a high variability of the connectivity of this category from one realizations 
to the other. This issue can be highlighted by evaluating the connectivity function (Renard and 
Allard, 2013, Vassena et al., 2010), i.e. the probability for two cells in the same category, 

separated by a given distance, to be connected. The connectivity function,  j
k h , between 

cells belonging to category k and separated by distance h along direction j, with j ={x, y, z} can 
be computed as: 

   
 

, ,

, ,

A B A k B k A B jj
k

A k B k A B j

N h
h

N h


    


   

x x x x x x e

x x x x e
 (3.1) 

where  , ,A k B k A B jN h   x x x x e  indicates the number of pairs of cells,  ,A Bx x , 

belonging to category k that are separated by the distance h along direction j and 

 , ,A B A k B k A B jN h    x x x x x x e  is the number of those pairs which also belong 

to the same cluster (this condition being expressed by A Bx x ). Note that  0 1j
k  . The 

behavior of j
k  as the separation distance increases can be predicted by percolation theory: for 

k tp p , the curve j
k  versus h decreases rapidly to 0, following an exponential trend 

(Grimmett, 2000); for k tp p , j
k  tends asymptotically to a constant (non-zero) value, which 

is the square of the probability for a cell in category k to belong to the percolating cluster. In 

our case,  2

, max
k

k kC p   , where the brackets represent the average over all realizations. 

Figure 3.4 collects connectivity function curves evaluated along x, y and z axes for each single 
realization in both the generated sets (dotted lines). The figure also displays the ensemble 
connectivity functions (solid lines) evaluated over the whole 100 realizations. We can 

recognize the behavior expected for k tp p  in the curves of silt and sand. In particular, Fig. 

3.4 reveals that, while in SISIM fields the connectivity of sand is larger than the connectivity 
of silt, the opposite occurs in fields generated by TPROGS. This result emphasizes the role of 
spatial correlation on connectivity: SISIM generations are based on the variogram model 
inferred from conditioning data. The horizontal range of the sand variogram model is larger 
than its counterpart for silt (see Deliverable D1.4a). 
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Figure 3.4. Ensemble connectivity function versus separation distance along x (a-b), y (c-d) and z (e-f) 
axes evaluated, for each category, over all 100 realizations (solid lines) generated with SISIM (a-c-e) 

and TPROGS (b-d-f). Connectivity functions computed in each single realization are also reported 
(dotted lines). 
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We also note that, for large separation distances, the curves j
k  for clay and gravel tend to non-

zero values. The latter tend to coincide with the expected asymptotic value 1,   for clay, while 

it is smaller than 2,   for gravel. This discrepancy is probably due to the effect of a non-infinite 

extension of the domain. The most relevant difference between the two generation methods 

concerns gravel, which attains considerably larger values of j
k  for TPROGS (Fig. 3.4b-d-f) 

with respect to SISIM (Fig. 3.4a-c-e). This can be motivated by the fact that, as we observed 
from the connectivity indices, in SISIM realizations gravel is more fragmented. So, the 
probability for a cell to belong to the percolating cluster is smaller, and, in turn, the asymptotic 
value associated with the curve decreases. Figure 3.4 also highlights that, as discussed above, 
gravel is characterized by a remarkably wider variability compared to the other categories for 
both methods. Since gravel is also the most conductive facies in our domain, this variability 
may have a serious impact on groundwater flow. This aspect will be further discussed in the 
next sections.  

3.2 Groundwater numerical model 

We consider all 100 realizations of facies distribution generated with SISIM and with 
TPROGS. For each realization, we develop a steady state, three-dimensional groundwater flow 
model. In Deliverable 1.4a, we introduced the numerical code used to simulate groundwater 
flow. To improve the accuracy of calibration results, the numerical model described in 
Deliverable 1.4a has been modified as follows:  

(i) We modified the surface recharge, R, including information on land use as:  
 

R P Q E L     (3.2) 

 
where P is the rainfall, Q is the surface runoff (soil-use dependent, calculated on the basis of 
the curve number method), E is the evapotranspiration term and L quantifies water-pipe losses 
in the urban areas (15% of the usage, calculated on the basis of population density data). The 
spatial distribution of recharge obtained from (3.2) is depicted in Fig. 3.5a.  

(ii) In the former version of the model, we merged all pumping wells located within each 
municipality in a single cell. As it is shown in Fig. 3.5b, some pumping wells (black symbols) 
are very close to head-observation wells used for model calibration (red symbols). Therefore, 
in the new model, we locate each pumping well in the exact position.  
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Figure 3.5. (a) Contour map of surface recharge. (b) Location of pumping (black symbols) and 

monitoring (red symbols) wells within the domain of simulation. 
 

3.3 Model Calibration 

Hydraulic conductivity values associated with the diverse geomaterials are calibrated in 
each MC realization on the basis of a Maximum Likelihood approach. As calibration data, we 
consider yearly-averaged hydraulic heads collected at 20 wells, the location of which is 
included in Figure 3.5b. As discussed in Deliverable 1.4a, hydraulic conductivity values 
associated with the two categories with the smallest volume fraction – i.e., silt and sand – do 
not affect appreciably the model outcomes. Therefore, reliable estimates of k3 and k4 cannot be 
obtained with the available data and we fix k3 = 10-6 m/s and k4 = 10-5 m/s, corresponding to 
intermediate characteristic values for the geomaterial considered.  

Figures 3.6a and 3.6b collect the calibrated values of clay hydraulic conductivity, k1, 
obtained in each realization of (a) SISIM and (b) TPROGS. The 95% confidence intervals (CIs) 
associated to each estimate are also reported in the figures. It can be noted that the results of 
the SISIM set are generally larger and characterized by larger estimation errors (as quantified 
by the 95% CI) than those of the TPROGS set. The same happens for gravel conductivity 
values, k2, depicted in Figs. 3.6c and 3.6d. These results are related to the behavior of 
connectivity discussed in Section 3.1: indeed, larger hydraulic conductivity estimates may 
compensate for the smaller degree of connectivity exhibited by gravel within the SISIM set of 
realizations.  
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Model identification/discrimination criteria (for the definitions, see Deliverable 1.4a) 
have been applied to rank realizations of both generation methods. Table 3.1 collects the values 
of the diverse criteria evaluated for the realization that, within each set, minimizes KIC. The 
best realization within the TPROGS set provides better results according to all criteria 
compared to its counterpart in SISIM. 

 

Figure 3.6. Hydraulic conductivity estimates of clay (a-b) and gravel (c-d), obtained for SISIM (a-c) 
and TPROGS (b-d) sets; 95% CIs are also shown. 

 

 

Criterion SISIM set TPROGS set 

J 1280 328 

NLL 140 113 

KIC 140 118 

AIC 144 117 

AICc 145 117 

BIC 146 119 

Table 3.1. Results of model identification criteria for the two realizations minimizing KIC amongst 
the set of SISIM and TPROGS Monte Carlo simulations. 
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3.4 Hydraulic head predictions from a multi-model approach 

Identification criteria also allow estimating the relative degree of likelihood of a model, 

iM , among a set of n available models as (see, e.g., Ye et al., 2004) 

 
   

   

min

min
1

1
exp KIC KIC

2
1

exp KIC KIC
2

i i

i n

k k
k

p M
p M

p M


   
 

       


OBSh  (3.3) 

where  ip M OBSh  is the posterior probability (or the posterior weight) of model iM , OBSh  is 

the vector of available data (i.e., 20 hydraulic head measurements in our case), KICi  is the KIC 

criterion computed for iM , minKIC  is the minimum value of KIC across all n models, and 

 ip M  is the prior probability of iM . In our case, since all realizations are equally likely, we 

set   1ip M n .  

A multi-model approach (Ye et al., 2004) allows to provide estimates of hydraulic head 

at the observation wells, EXPh , on the basis of (i) the hydraulic heads computed in each 

realization, , kM  OBSh h , and (ii) the posterior weights (3.3): 

 
1

, ,
n

k k k
k

E M M p M


        EXP OBS OBS OBSh h h h h h  (3.4) 

The posterior variance associated to EXPh  can be computed as 

   2

1

, .
n

k k
k

Var M p M


        OBS OBS EXP OBSh h h h h h  (3.5) 

Equations 3.4 and 3.5 have been evaluated by setting n =100 and considering SISIM and 

TPROGS realizations. Values of EXPh  versus OBSh  are depicted in Figure 3.7. Error bars of 

amplitude 2 Var   OBSh h  are also shown. It clearly appears that the best estimates of 

hydraulic head are those computed from the TPROGS set (Fig.3.7b), which also exhibit lower 
(posterior) variances compared to their SISIM counterparts (Fig.3.7a).  
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Figure 3.7 Multi-model hydraulic head estimates versus observed hydraulic heads evaluated over the 

set of (a) SISIM and (b) TPROGS realizations. Error bars are computed as Var   EXP OBSh h h .  
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ANNEX I – List of monitoring wells at Cremona aquifer 

XGB YGB Code City Hydraulic HEAD  

(m) (m)     (m.a.s.l) 

1546246 5058675 PO0160890R0001 CURNO 147.39 

1552422 5057977 PO0160240R0296 BERGAMO 179.67 

1548663 5057222 PO016123NU0001 LALLIO 152.63 

1539673 5055769 PO0162090R1633 SUISIO 187.10 

1554164 5053751 559 ZANICA 170.21 

1544489 5052062 PO0161530R0004 OSIO SOTTO 134.90 

1553315 5049728 PO0162220U0004 URGNANO 101.83 

1545606 5049590 40 BOLTIERE 157.72 

1548113 5048625 PO0160750U0003 CISERANO 161.54 

1548206 5047689 PO0160110U0005 ARCENE 114.58 

1550916 5047610 539 SPIRANO 155.77 

1544065 5047581 565 PONTIROLO N 63.58 

1548706 5047200 386 ARCENE 76.35 

1553984 5046280 454 COLOGNO S 71.85 

1555440 5046169 456 COLOGNO S 78.90 

1545936 5046152 518 PONTIROLO N 66.07 

1550487 5045663 PO0161290R0001 LURANO 93.14 

1543323 5041854 471 FARA GERA D'ADDA 86.35 

1546804 5041457 322 TREVIGLIO 98.44 

1546081 5041378 PO016219NUP001 TREVIGLIO 68.92 

1544123 5041129 329 TREVIGLIO 63.53 

1552699 5040223 80 CARAVAGGIO 70.09 

1545540 5040023 324 TREVIGLIO 155.34 

1555554 5038707 171 FORNOVO S.G. 104.44 

1550740 5037697 78 CARAVAGGIO 106.97 

1544537 5036799 439 CASIRATE D'ADDA 111.95 

1547168 5036352 64 CALVENZANO 109.48 

1548578 5035713 PO0161350U0001 MISANO DI GERA D'ADDA 111.97 

1547459 5034881 PO019112NU1123 VAILATE 110.28 

1540446 5033610 PO019084NRA002 RIVOLTA D'ADDA 113.58 

1554749 5030589 PO019094NU0944 SERGNANO 147.76 

1546163 5026783 PO0190660U0002 PALAZZO PIGNANO 106.53 

1553178 5025240 PO0190350UA005 CREMA 139.65 

1537605 5023199 PO098003NR0063 BOFFALORA D'ADDA 143.26 

1552672 5022953 PO019035NRA001 CREMA 115.51 

1542996 5021730 PO098025NR0110 CRESPIATICA 138.77 

1554037 5020335 PO019081NUP001 RIPALTA CREMASCA 147.67 

1543975 5018387 PO098024NR0087 CORTE PALASIO 160.49 

1551368 5017127 PO0190340U0001 CREDERA RUBBIANO 149.36 
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Table A.1. List of monitoring wells at which GSA metrics have been evaluated and used during the 
calibration procedures (ordered from North to South). 

ANNEX II – List of water springs at Cremona aquifer 

XGB YGB NAME CITY VILLAGE 

1540855 5023582 ALIPRANDA CR DOVERA 

1540855 5023612 ALIPRANDA CR DOVERA 

1543450 5035830 ARZAGO D'ADDA_1 BG ARZAGO D'ADDA 

1544300 5036350 ARZAGO_2 BG ARZAGO D'ADDA 

1544250 5036580 ARZAGO_3 BG ARZAGO D'ADDA 

1542920 5037130 ARZAGO_4 BG ARZAGO D'ADDA 

1546528 5032237 BALARIN CR BVAILATE 

1538834 5030738 BALDROLA CR RIVOLTA D'ADDA 

1549924 5034089 BENZONA CR CAPRALBA 

1547904 5034058 BETTA' CR VAILATE 

1546286 5033150 BIANCA(VIGNOLO) CR VAILATE 

1545357 5034031 BOGINO CR VAILATE 

1539568 5028467 BONTEMPA CR SPINO D'ADDA 

1539752 5025488 BORLINA CR SPINO D'ADDA 

1539524 5030392 BOSCA CR RIVOLTA D'ADDA 

1545855 5031906 BREDE CR TORLINO VIMERCATI 

1545800 5031908 BREDE CR TORLINO VIMERCATI 

1546767 5032436 BURLENGO CR VAILATE 

1543008 5022996 BUS DA VALENT CR DOVERA 

1541474 5024847 BUSCHETT CR DOVERA 

1547190 5032246 CAPRI CR TORLINO VIMERCATI 

1550770 5034300 CARAVAGGIO_1 BG CARAVAGGIO 

1549950 5036200 CARAVAGGIO_2 BG CARAVAGGIO 

1549160 5036660 CARAVAGGIO_3 BG CARAVAGGIO 

1551800 5036730 CARAVAGGIO_4 BG CARAVAGGIO 

1549670 5037800 CARAVAGGIO_5 BG CARAVAGGIO 

1547150 5032552 CARRERE CR VAILATE 

1538332 5028022 CASCINETTO DI SPINO CR SPINO D'ADDA 

1541133 5031298 CAVO DI PANDINO CR PANDINO 

1539360 5033270 CIOCCHERA CR RIVOLTA D'ADDA 

1542080 5028984 COLOMBAROLO CR PANDINO 

1548195 5032404 COLOMBERA CR CAPRALBA 

1541530 5028191 CURNIN CR PANDINO 

1544070 5029630 DAL PIR CR PANDINO 

1547143 5029256 DEI BORNACI CR TORLINO VIMERCATI 

1546377 5034224 DEI BUCHI CR VAILATE 

1546906 5033303 DEI GRASSI CR VAILATE 

1547340 5027750 DEI PENSIONATI CR TRESCORE CREMASCO 

1546340 5030550 DEL CASINETTO CR TORLINO VIMERCATI 
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1547042 5029656 
DEL CIMITERO DI 

TORLINO CR TORLINO VIMERCATI 

1548895 5032596 DEL CIMITERO EST CR CAPRALBA 

1547030 5029240 DEL DEPURATORE CR TORLINO VIMERCATI 

1539591 5029231 DEL PRETE CR PANDINO 

1544420 5027280 DEL TORMO DI PANDINO CR PANDINO 

1550703 5033226 DELE LOTTE CR CAPRALBA 

1545462 5032218 DELLA CA' CR VAILATE 

1546745 5030321 
DELL'ACQUAROSSA 

MEZZO CR TORLINO VIMERCATI 

1546641 5030483 
DELL'ACQUAROSSA 

NORD CR TORLINO VIMERCATI 

1546820 5030267 DELL'ACQUAROSSA SUD CR TORLINO VIMERCATI 

1546846 5028928 DELLE BREDE EST CR TORLINO VIMERCATI 

1550848 5032569 DELLE CANNE CR CAPRALBA 

1550850 5032607 DELLE CANNE CR CAPRALBA 

1548357 5034128 DELLE GUARDIE CR VAILATE 

1547207 5031172 DESGIO' CR PIERANICA 

1541184 5027249 DI CASA CR PANDINO 

1550970 5027000 DI CREMOSANO EST CR CREMOSANO 

1550820 5027040 DI CREMOSANO OVEST CR CREMOSANO 

1544351 5029293 DI SAS CR PANDINO 

1546706 5029551 DI TORLINO CR TORLINO VIMERCATI 

1546787 5029480 DI TORLINO SUD CR TORLINO VIMERCATI 

1542685 5024312 DOVEROLA CR DOVERA 

1543467 5022582 DOVEROLO CR DOVERA 

1541377 5025636 EL RI CR DOVERA 

1541376 5024600 FALCONA CR DOVERA 

1539384 5030379 FALCONETTA CR RIVOLTA D'ADDA 

1549363 5032086 FARINATE CR CAPRALBA 

1539775 5024317 FASOLA CR DOVERA 

1546524 5035108 FONTANELLA DEI DOSSI CR VAILATE 

1538457 5025675 FONTANELLA DI SPINO CR SPINO D'ADDA 

1547556 5031891 
FONTANELLA DI 

TORLINO CR TORLINO VIMERCATI 

1545716 5032274 
FONTANELLA DI 

VAILATE CR VAILATE 

1553969 5033213 FONTANINE CR SERGNANO 

1549590 5031487 
FONTANONE DI 

CAPRALBA CR CAPRALBA 

1549620 5031535 
FONTANONE DI 

CAPRALBA CR CAPRALBA 

1549627 5031671 
FONTANONE DI 

CAPRALBA CR CAPRALBA 

1540970 5027585 
FONTANONE DI 

PANDINO CR PANDINO 

1546745 5031173 
FONTANONE DI 

TORLINO CR TORLINO VIMERCATI 
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1552900 5037560 
FORNOVO SAN 

GIOVANNI BG 
FORNOVO SAN 

GIOVANNI 

1541776 5022357 FRACAVALLA CR DOVERA 

1539555 5031102 FRIZZODI EST CR RIVOLTA D'ADDA 

1539245 5030817 FRIZZONI DI MEZZO CR RIVOLTA D'ADDA 

1539178 5031038 FRIZZONI OVEST CR RIVOLTA D'ADDA 

1542289 5024466 GARATA CR DOVERA 

1541578 5026616 GRADELLA CR PANDINO 

1546611 5030071 LA MORTA CR TORLINO VIMERCATI 

1543565 5022540 LA VAL CR DOVERA 

1539856 5035128 LAGAZZO CR RIVOLTA D'ADDA 

1537834 5030579 LAGAZZONE CR RIVOLTA D'ADDA 

1538134 5028712 LAVANDINO CR SPINO D'ADDA 

1548282 5031947 MACCHERONE CR CAPRALBA 

1548347 5031953 MACCHERONE CR CAPRALBA 

1548412 5031960 MACCHERONE CR CAPRALBA 

1547678 5022824 MELESA CR BAGNOLO CREMASCO 

1540000 5031994 MERLO' DI MEZZO CR RIVOLTA D'ADDA 

1540084 5031891 MERLO' EST CR RIVOLTA D'ADDA 

1539790 5032140 MERLO OVEST CR RIVOLTA D'ADDA 

1550039 5034878 MISANO BG 
MISANO DI GERA 

D'ADDA 

1549100 5034100 
MISANO DI GERA 

D'ADDA BG 
MISANO DI GERA 

D'ADDA 

1549530 5035160 
MISANO DI GERA 

D'ADDA_1 BG 
MISANO DI GERA 

D'ADDA 

1549930 5035770 
MISANO DI GERA 

D'ADDA_2 BG 
MISANO DI GERA 

D'ADDA 

1549200 5035970 
MISANO DI GERA 

D'ADDA_3 BG 
MISANO DI GERA 

D'ADDA 

1549950 5036050 
MISANO DI GERA 

D'ADDA_4 BG 
MISANO DI GERA 

D'ADDA 

1541599 5030212 MOIA CR PANDINO 

1546036 5032387 MONIGHET CR VAILATE 

1552782 5031477 MORGOLA CR SERGNANO 

1537406 5025402 MOZZANICA CR SPINO D'ADDA 

1537423 5025438 MOZZANICA CR SPINO D'ADDA 

1553000 5033480 MOZZANICA BG MOZZANICA 

1549773 5031017 ORA CR CAPRALBA 

1548593 5031354 ORIOLA CR CAPRALBA 

1548583 5031402 ORIOLA CR CAPRALBA 

1540594 5025945 PIERO FRA CR PANDINO 

1537456 5025385 PORTICO CR SPINO D'ADDA 

1548885 5032818 QUARANETINA CR CAPRALBA 

1548082 5032526 QUARANTA CR CAPRALBA 

1548889 5032662 QUARANTINA CR CAPRALBA 

1547465 5029812 REMORTIZZO CR PIERANICA 
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1537600 5028706 RESEGA CR SPINO D'ADDA 

1539532 5026731 RIOLA CR SPINO D'ADDA 

1544062 5030521 ROGGETTO CR PANDINO 

1537673 5027598 ROGGIONE CR SPINO D'ADDA 

1544947 5029896 SABBIANINO EST CR PANDINO 

1544790 5029918 SABBIANINO OVEST CR PANDINO 

1553417 5030465 SCHIAVA CR SERGNANO 

1553424 5030361 SCHIAVA CR SERGNANO 

1548332 5031632 SEREDEI CR CAPRALBA 

1547470 5032472 SIMONETTA CR TORLINO VIMERCATI 

1542885 5025685 SMERDAROLO CR DOVERA 

1542835 5025713 SMERDAROLO CR DOVERA 

1546547 5031651 STAFI' CR TORLINO VIMERCATI 

1541661 5024966 STELLA CR DOVERA 

1540456 5027334 TINELLA CR PANDINO 

1542073 5025720 VALLE DELL'ORTO CR DOVERA 

1548260 5034255 VALLETTA CR VAILATE 

1548260 5034255 VALLETTA CR VAILATE 

1546648 5022108 VALMARZA CR BAGNOLO CREMASCO 

1537683 5029533 VILLANA CR SPINO D'ADDA 

1544066 5030176 ZECCA CR PANDINO 
Table A.2. List of Spring considered in the model (alphabetic order). 
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ANNEX III – Spring flow rate measurements at Cremona aquifer. 

Date Measurement 

01.12.1988 11.75 

01.01.1989 8.42 

01.04.1989 9.44 

01.06.1989 19.02 

01.07.1989 23.24 

01.08.1989 16.58 

01.12.1989 9.39 

01.03.1990 5.79 

01.04.1990 8.81 

01.06.1990 26.53 

01.07.1990 18.92 

01.09.1990 15.14 

01.11.1990 16.96 

Mean value 14.62 
Table A.3. Discharge measurements (m3/s) collected during the year 1989-1990. The cumulative 
value of the 35 sections reported in Figure 2.7 is reported. 

 

day Misana Quarantina Acquarossa 
upstream 

Acquarossa 
downstrem 

 XGB = 1550039; 
YGB = 5034878 

XGB = 1549362; 
YGB = 5032086 

XGB = 1546641; 
YGB= 5030483 

XGB = 1546745; 
YGB= 5030321 

31.03.09 0.534 0.25 0.296 0.343 
06.04.09 0.494 0.173 0.345 0.436 
17.04.09 0.391 0.192 0.306 0.378 
23.04.09 0.518 0.182   
05.05.09 0.515 0.241   
13.05.09 0.514 0.242  0.252 
22.05.09 0.457 0.134  0.139 
27.05.09 0.556 0.256  0.295 
08.06.09 0.557 0.183  0.304 
12.06.09 0.476 0.199   
19.06.09 0.445 0.17 0.245 0.452 
03.07.09 0.713 0.195  0.671 
14.07.09 0.618 0.174 0.137 0.352 
29.07.09 0.659 0.14 0.223 0.505 
02.09.09 0.627 0.498  0.686 
Mean 
value 

0.52 0.20 0.27 0.36 

Table A.4. Discharge measurements (m3/s) collected during the year 2009. 


