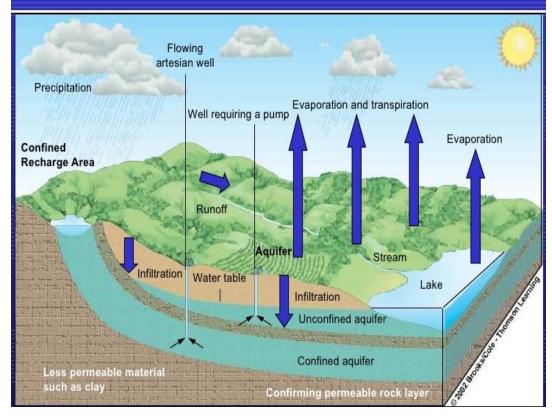
Mixture toxicity predictions to address groundwater contamination

Susana Loureiro

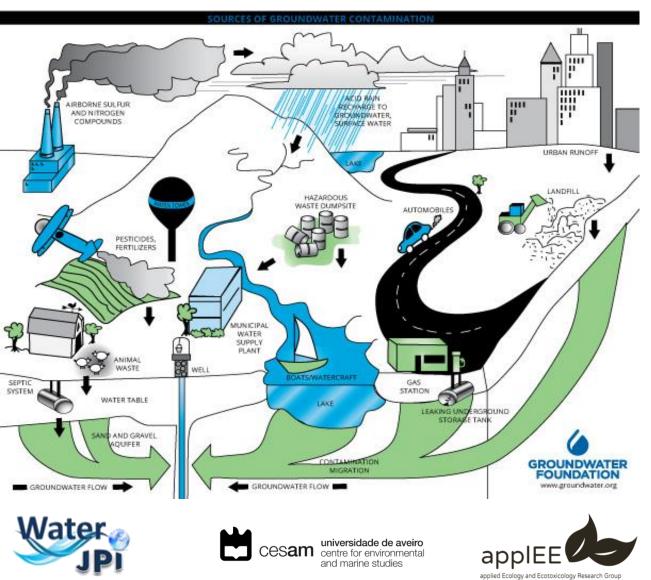
Maria D. Pavlaki, Rui Morgado, Sandra F. Gonçalves, Ana Rita Silva, Bernardo Castro, Amadeu M.V.M. Soares

sloureiro@ua.pt



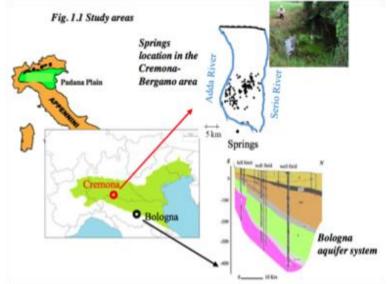
Ground Water cycle

- Freshwater availability and qualitykey for human life.
- Groundwater is the world's most important source of freshwater.
- Ecosystem quality, energy and food security.
- 2 billion people: drinking water and irrigation for world's food supply.



Major sources of groundwater contamination

Natural resource endangered by several factors, including overexploitation and contamination by anthropogenic activities.


These elements severely affect the water-energy-food nexus, with critical environmental, sociological and economic consequences.

WE-NEED WatEr NEEDs, Availability, Quality and Sustainability

WP4 Objective:

Quantitative assessment of potential deleterious effects to the environment of emergent contaminants (e.g. PPCPs, nanoparticles) and risk assessment of any implications related to potential hazards of groundwater pollution in ecosystems

Cremona Aquifer:

Main supply for agricultural usage and key environmental driver

Bologna Aquifer:

80% of water used for public consumption and industrial use

late

To request chemical analysis you should know what to request...

So, what about when you fail on one crucial compound??

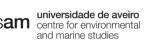
What about those below the chemical detection limit??

Specific Objectives:

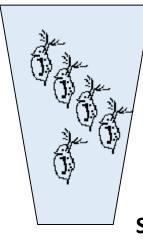
- 1. Assess the potential toxicity of groundwater samples
- 2. Infer potential increases in toxicity (synergism) due to multiple chemical exposure

Two freshwater model organisms

Daphnia magna



Danio rerio



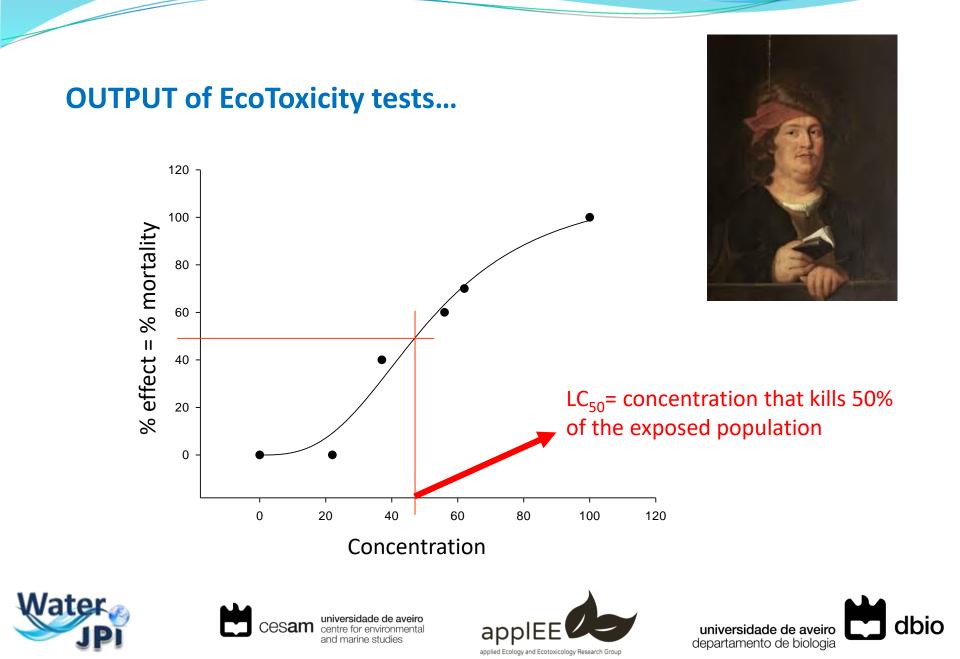
Water Flea

Daphnia magna

48h

Stirring for 10 sec... Wait for 10 sec... Count how many are still swimming or moving

Zebra fish Danio rerio https://owlcation.com/stem/The-why-and-how-of-breedingzebrafish-for-research 20-somites 25-somite 24 hr 28 hr 33 hr 36 hr From: Kimmel et al. Stages of embryonic development of the zebrafish Dev. Dyn. 203:253-310, 1995



CONTRUMTION OF CONTRUMTION OF CONTRUMTION OF CONTRUCT OF CONTRUCTO OF CONTRUCTO OF CONTRU

dbio

Ground water characteristics

Synthetic groundwater

composition provided by Partner 2:

Department of Earth and Planetary

Sciences, Weizmann Institute of

Science, Israel

מכוז ויצמו למדע WEIZMANN INSTITUTE OF SCIENCE

	Bologna	Cremona
Composition	Concentration	Concentration
Composition	(mg/L)	(mg/L)
CaCO ₃	475	158.3
MgSO ₄	138	46.1
Ca(HCO ₃) ₂	673	224.2
NaCl	67	22.4
NaNO ₃	34	11.3
Humic acid (sodium salt)	5	5
	μg/L	μg/L
tetrachloroethylene (PCE)	30	10.0
NaF	75	25
(NH ₄)OH	100	33.3
H ₃ BO ₃	800	266.7

Anthropogenic contaminants

1st experimental setup:

... compare **anthropogenic contaminants toxicity** found in ground waters **individually** ...

... different water types ...

Bologna and Cremona waters testing contaminants individually

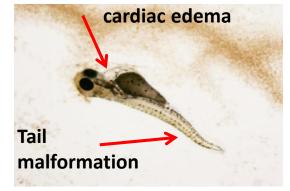
48h-LC₅₀ values (mg/L) with confidence intervals between brackets for *Daphnia magna* k6 exposed to different compounds for ASTM, Cremona and Bologna waters.

	ASTM	CREMONA	BOLOGNA
Boric acid	697.6	664.0	165.1
	(568.6-792.4)	(626.8-705.6)	(132.4-199.1)
Ammonium hydrovido	91.9	105.0	323.5
Ammonium hydroxide	(79.5-115.1)	(102.0-108.1)	(295.7-357.3)
NaF	540.2	513.4	594.0
	(436.2-647.4)	(493.9-533.5)	(543.1-646.3)

96h-LC₅₀ values (mg/L) with confidence intervals between brackets for *Danio rerio* exposed to different compounds for FSW, Cremona and Bologna waters.

	FSW	CREMONA	BOLOGNA
Boric acid	1617.6	991.2	401.5
	(1426.4-1876)	(863-1160.7)	(348.3-466.6)
Ammonium hydroxide	>20	94.2	122.2
Ammonium nyuroxide		(80.6-112.3)	(108.2-138.8)
NaF	1009.1	664.1	993.8
	(848.6-1169.5)	(580.7-746.4)	(876.6-1171.6)

Danio rerio e.g. Sodium Fluoride (NaF)


96 h larvae

FSW (CTR)

Cremona + NaF

Bologna + NaF

inflated bladder

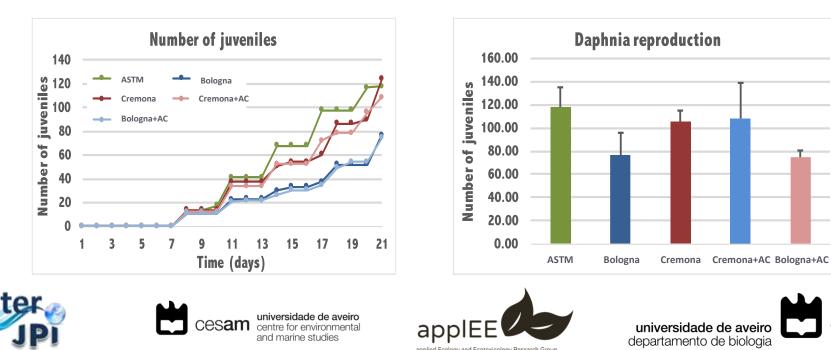
FSW + NaF

Tail malformations

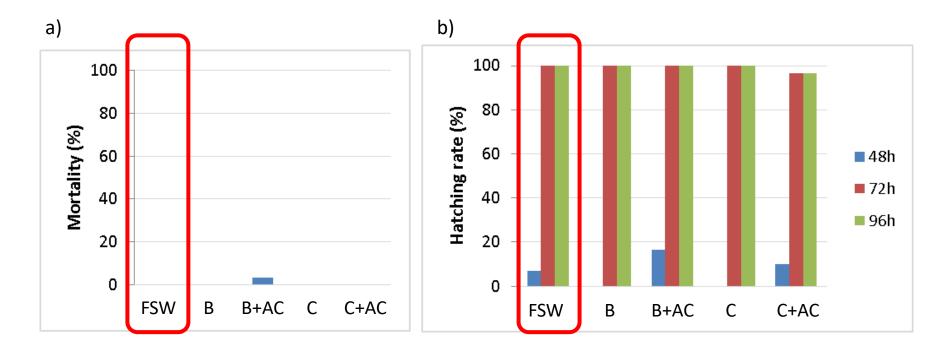
2nd experimental setup:

... compare **anthropogenic contaminants toxicity** found in ground waters **mixtures** ...

... mimicking different ground waters...



Survival data (24 and 48h) and reproduction for *Daphnia magna* k6 Cremona and Bologna waters with anthropogenic contaminants: - PCE, Boric acid, NaF and Ammonium hydroxide


Survival	ASTM	CREMONA	CREMONA + AC	BOLOGNA	BOLOGNA + AC
24h	100%	100%	100%	100%	100%
48h	100%	100%	100%	100%	100%

Reproduction data (21 days)

dbio

FET (Fish Embryo Acute Toxicity) test with zebrafish (*D. rerio*) after 96h Fish System Water (FSW), Cremona (C) and Bologna (B)

(AC- Anthropogenic contaminants)

3rd experimental setup:

... compare **anthropogenic contaminants toxicity** found in ground waters **other possible ground water contaminants** ...

- ... Acetaminophen
- ... Triclosan
- ... PFOA
- ... PFOS

Bologna and Cremona waters (total composition)

48h-LC₅₀ values (mg/L) with confidence intervals between brackets for *Daphnia magna* k6 exposed to different compounds for ASTM, Cremona and Bologna waters.

	ASTM	CREMONA	BOLOGNA
Acetaminophen	3.39	3.11	5.7
	(3.04-3.76)	(2.75-3.48)	(4.8-7)
Triclosan	0.98	0.95	2.23
	(0.70-1.69)	(0.86-1.03)	(1.65-3.48)
PFOA	414.3	428.7	501.6
	(374.9-453.6)	(363.7-507)	(442-582)
PFOS	21.1 ¹	4.51	6.25
	(n.d.)	(3.74-5.28)	(5.88-6.62)

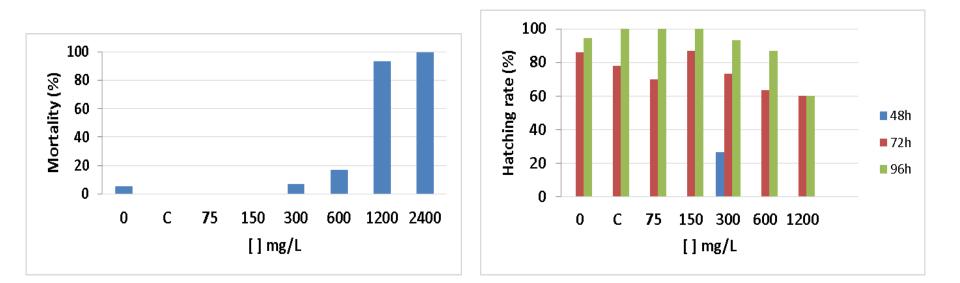
¹ Yang et al (2019), Sci Total Environ

Bologna and Cremona waters (total composition)

96h-LC₅₀ values (mg/L) with confidence intervals between brackets for *Danio rerio* exposed to different compounds for FSW, Cremona and Bologna waters.

	FSW	CREMONA	BOLOGNA
Acetaminophen	1483.2	736.7	634.6
	(n.d.)	(594.3-928.9)	(564.3-741.9)
Triclosan	0.42 ¹	0.80	0.73
	(0.38-0.45)	(n.d.)	(n.d.)
PFOA	759 ²	545.1	377.9
	(643-875)	(483.7-611.7)	(343.9-413.7)
PFOS	3.04	6.34	2.88
	(1.35-14.88)	(4.79-9.33)	(2.02-4.47)

¹Oliveira et al (2009), Environ Sci Pollut Res ²Stengel et al (2018), Environ Sci Pollut Res



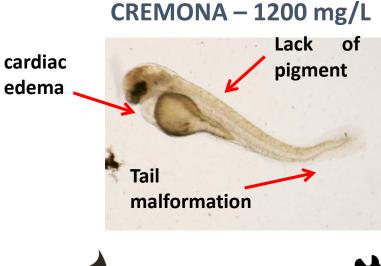
Danio rerio – e.g. Acetaminophen

FET (Fish Embryo Acute Toxicity) test with zebrafish (*D. rerio*) in the Cremona water and exposed to Acetaminophen after 96h: a) cumulative mortality; b) hatching rate.

Danio rerio – e.g. Acetaminophen

96 h larvae

FSW



CREMONA – 600 mg/L

Lack of pigment spine curvature

CREMONA

universidade de aveiro

departamento de biologia

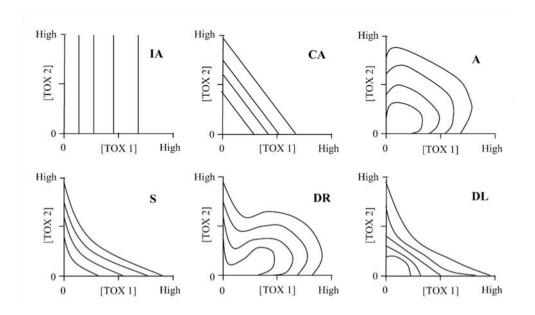
dbio

4th experimental setup:

... compare **anthropogenic contaminants toxicity** found in ground waters **looking at mixtures**...

Binary mixtures

Component-based approach

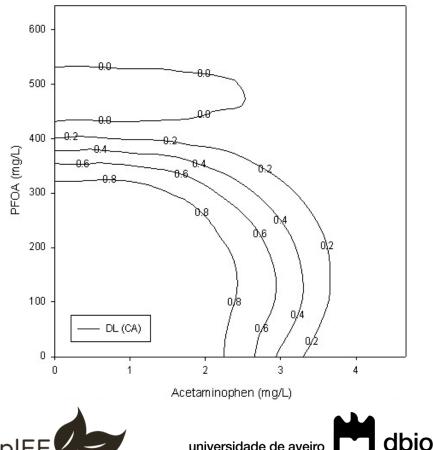

Identification of interaction between chemicals

Concentration Addition (CA)

Reference model Widely accepted by risk assessors Conservative model Assuming no interaction

Nested framework - MIXTOX

Start with reference model Add extra parameters to assess possible deviations



Binary mixtures – e.g. ACET – PFOA

Summary of the analysis of the effect of ACET and PFOA in Cremona water on the mortality of D. magna.

	Concentration Addition						
	Reference	S/A	DR	DL			
max	0.92	0.85	0.85	0.83			
β _{ΑСΕΤ}	1.65	5.86	5.86	10.7			
β _{ργοα}	479.9	486.2	486.2	419.8			
EC _{50 ACET}	4.03	2.80	2.8	2.92			
EC _{50 PFOA}	424.9	334.4	334.4	323.8			
a	-	2.25	2.25	0.66			
b	-	-	0.01	-1.44			
SS	198.4	149.67	149.67	144.6			
R ²	0.60	0.70	0.70	0.71			
p(X ²)	-	< 0.0001	0.97	<u>0.02</u>			

Concentration-response data (isoboles) of survival after 48 hours of exposure to acetaminophen and PFOA showing a doselevel dependent response.

universidade de aveiro

departamento de biologia

and marine studie

Binary mixtures – e.g. Acetaminophen – PFOS

Summary of the analysis of the effect of ACET and PFOS in Cremona water on the mortality of *D. rerio*. Concentration–response data (isoboles) of survival after 96 hours of exposure to acetaminophen and PFOS showing a synergistic response at low dose levels.

		Devi	ations fro	om CA	
		model			$12 0.2 0.4 \\ 0.0 0.2 0.2 0.2 0.4 \\ 0.2 0.2 0.2 0.4 \\ 0.0 0.2 0.2 0.4 \\ 0.1 0.2 0.4 \\ 0.1 0.2 0.4 \\ 0.2 0.4 0.2 0.4 \\ 0.1 0.2 0.4 $
	CA	S/A	DR	DL	10 -0.2
R ²	0.86	0.86	0.89	0.87	
SS	43.7	43.7	35.7	41.49	(J) 8 6:0 00000420:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p(F-test	< 0.05	-	-	-	
p(χ²)	-	> 0.05	< 0.05	< 0.05	
max	0.88	0.88	0.86	0.87	2 - 0.0
а	-	0.04	1.06	-2.17	0 0.8%
b	-	-	-2.94	1	0 500 1000 1500 2000 Acetaminophen (mg/L)

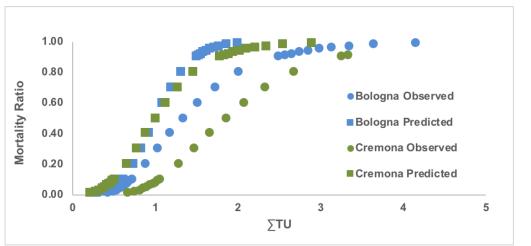
Ternary mixtures – e.g. ACET– TCS – PFOA

Experimental design for acute toxicity experiments in *D. magna* testing three-component mixtures containing ACET, TCS and PFOA. Fixed-ratio design based on TU-based approach.

Cremona Mixture	ACET TU			ΣTU	
MI	0.0078	0.0078	0.0078	0.02	
M2	0.0156	0.0156	0.0156	0.05	
M3	0.03125	0.03125	0.03125	0.09	
M4	0.0625	0.0625 0.0625		0.19	
M5	0.125	0.125	0.125	0.38	
M6	0.25	0.25	0.25 0.25		
M7	0.375	0.375	0.375	1.13	
M8	0.5	0.5	0.5	1.50	
M9	I	I	I	3.00	
M10	2	2	2	6.00	

CA-predicted vs observed acute toxicity three-compound mixture *Daphnia magna*

Water


universidade de aveiro centre for environmental and marine studies

apple

Performed for synthetic groundwaters

- Higher toxicity (increased mortality) observed in the Bologna water when compared to Cremona water caused by the ternary mixtures —> Differences in the chemical composition of the two synthetic groundwaters

Risk characterization

$$RQ = \frac{PEC_i}{PNEC_i}$$

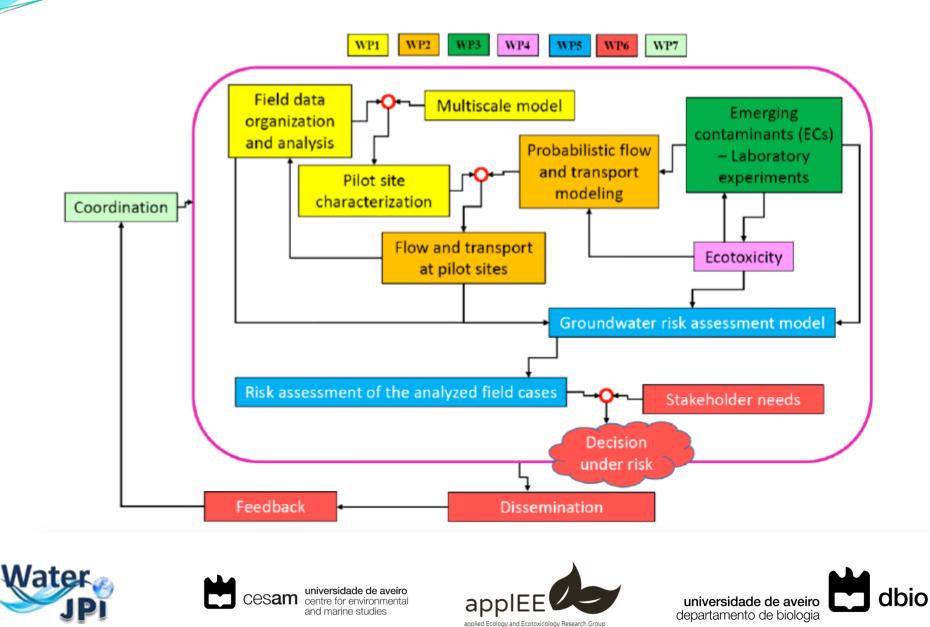
Stepwise approach for calculation of an "ecosystem risk quotient":

1. PEC/PNEC ratios of all mixture components

$$RQ_{PEC/PNEC} = \sum_{i=1}^{n} \frac{PEC_i}{PNEC_i} = \sum_{i=1}^{n} \frac{PEC_i}{\min(EC50_{daphnids}, EC50_{fish}) \times (1/AF_i)}$$

2. Sum of Toxic Units (STU) calculated for each trophic level

$$RQ_{STU} = \max\left(STU_{daphnids}, STU_{fish}\right) \times AF$$
$$= \max\left(\sum_{i=1}^{n} \frac{PEC_{i}}{EC50_{i,daphnids}}, \sum_{i=1}^{n} \frac{PEC_{i}}{EC50_{i,fish}}\right) \times AF$$



Risk characterization

Environmental risk characterization of emerging contaminant mixtures - a comparison of standard protocols and groundwater adapted protocols.

PEC values based on maximum		ASTM	/ FSW	Crem	nona	Bolo	ogna
concentrations found for groundwater in	PEC	LC ₅₀ D. magna	LC ₅₀ D. rerio	LC ₅₀ D. magna	LC ₅₀ D. rerio	LC ₅₀ D. magna	LC ₅₀ D. rerio
literature	(mg / L)	(mg	/ L)	(mg	/ L)	(mg	/ L)
Acetaminophen	0.12	3.388		3.105	736.69	5.741	643.61
Triclosan	0.0021	0.977		0.948	0.796	2.233	0.731
PFOS	0.000039 ²	537.866		428.713	545.06	501.621	377.89
PFOA	0.000135 ²	67.2		4.51	62.45	5.01	
RC	PEC/PNEC	37.468	29067	41.168	86816	23.66	52838
	(
	RQ _{STU}	37.468		40.787		21.824	96176
				ironmental Pollu search 44: 4115		303	
Water Cesam universidade de aveiro centre for environmental and marine studies apple Ecology and Ecotoxicology Research Group universidade de aveiro departamento de biologia universidade de aveiro departamento de biologia							

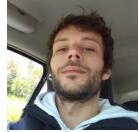
WE-NEED WatEr NEEDs, Availability, Quality and Sustainability

Susana Loureiro Assistant Professor with Habilitation sloureiro@ua.pt

Amadeu Soares Full Professor asoares@ua.pt

Ana Rita Silva Post-doctoral researcher ritas@ua.pt

Sandra Gonçalves Research Fellow sgoncalves@ua.pt



Rui Morgado Post-doctoral researcher ruimorgado@ua.pt

Maria Pavlaki Junior researcher maria.pavlaki@ua.pt

José Bernardo Ferreira de Castro Mousinho MSc Student jbcastro@ua.pt

universidade de aveiro departamento de biologia

Acknowledgements

- This work was supported by the WE-NEED project (WATERJPI/0008/2014), which receives funding through the WaterJPI Water Works program, to FCT/MEC through national funds, and the co-funding by the FEDER (POCI-01-0145-FEDER-00763), within the PT2020 Partnership Agreement and Compete 2020.
- Thanks are due for the financial support to CESAM (UID/AMB/50017/2019) to FCT/MEC through national funds.

