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• Modeling of contaminant transport in aquifers is important for:

– Risk assessment

– Evaluation of remediation strategies

– Delimitation of protection perimeters near recovery wells

– Characterization of the hydraulic properties of the aquifer

– (…)

• Subsurface is complexly heterogeneous and observations are scarce. 

• For these reasons, we need models to be stochastic.  

• Two main groups of methods for numerical modeling of transport:

– Eulerian

– Lagrangian

INTRODUCTION

LAGRANGIAN MODELS AND RWPT

1.1
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• Lagrangian methods: Advect the numerical element (particle) 

and “remove” the advection term from the transport equation. 

• Particularly good for advection-dominated problems. (𝑃𝑒 ≫ 1)

• Random-Walk Particle Tracking (RWPT): Dispersion is modeled as 
random fluctuations of the particle displacement in a time step.

• Random variables in RWPT models can simulate processes and 

fluctuations occurring at the sub-grid scale. 

(Eulerian)

(Eulerian-Lagrangian)

(Lagrangian)

INTRODUCTION

LAGRANGIAN MODELS AND RWPT

Herrera et al., 2009

1.2
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LAGRANGIAN MODELS AND RWPT

LAGRANGIAN MODELS ARE:

• Efficient

• Versatile

• Mass conservative

• No numerical dispersion

• No instabilities

• Well suited for stoch. modeling

• RWPT: “Multiscale modeling”

BUT…

• Simulation of nonlinear reactive 

processes require interaction 

between particles

1.3
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1.1. The need for a density estimator in particle methods

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

2.1
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1.3. Local vs Global optimal KDE

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

• We developed a locally optimized KDE

method and compared it to existing 

global (constant) KDE approaches.

2.3



UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering

Hydrogeology Group GHS (UPC-CSIC)

WE-NEED

1.3. Local vs Global optimal KDE

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

• We developed a locally optimized KDE

method and compared it to existing 

global (constant) KDE approaches.

• The local method is able to mimic the 

wide variety of local states of the particle 

plume.

ℎ ≔ ℎ1ℎ2

𝑠1 = ℎ1/ℎ2

∗

2.3
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1.3. Local vs Global optimal KDE

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

• We developed a locally optimized KDE

method and compared it to existing 

global (constant) KDE approaches.

• The local method is able to mimic the 

wide variety of local states of the particle 

plume.

• As a consequence, it is more accurate 

and hence, also more efficient than 

existing methods.

2.3
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1.4. Bounded Grid-Projected Adaptive Kernel Smoothing

• Recently [1] we developed a locally adaptive KDE method for implementation in RWPT.

• However, the kernel approach can be computationally expensive for high particle numbers.

• Besides, the issue of boundary conditions has (or had) not been addressed.

• We present a “hybrid” approach [2] that combines the low computational costs of binning         

& the accuracy of KDE, while accounting for the effect of boundary conditions on the kernel.

[1] Sole-Mari & Fernàndez-Garcia (2018). Lagrangian Modeling of Reactive Transport (…), WRR.

[2] Sole-Mari et al. (2019). Particle Density Estimation with Grid-Projected (…) , Preprint submitted to AWR.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

2.4
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2.1. General idea: A “hybrid” density estimation method

DENSITY

𝜌

PILOT BINNING

+

DENSITY KERNEL

CONCENTRATIONS

CHEMICAL REACTIONS

𝑐 = 𝜌𝑚/𝜙

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.4
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(OPTIMAL) DENSITY 

KERNEL

2.2. The locally optimal density kernel

PILOT BINNING

+

CURVATURES

𝜅 1

𝜅 2 log ℎ1/ℎ2

ℎ1ℎ2

CURVATURE KERNEL

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.5
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2.3. Fixed-point iteration

• The kernel evolves recursively.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT
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2.3. Fixed-point iteration

• The kernel evolves recursively.

• Robust convergence even for “bad” input.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.6
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2.4. The former trouble with boundaries 

• Conventional KDE fails near boundaries

• Correction to account for boundaries: 

Impermeable, Dirichlet or Robin.

• Based on treating the kernel as a diffusive 

process: (pseudo)-reflection principles.

• Applicable to irregular boundaries.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.7
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2.5. Computational efficiency 

CPU Time ~ Binning Optimal CPU-Error RatioError ~ KDE

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD
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2.5. Computational efficiency 

CPU Time ~ Binning Optimal CPU-Error RatioError ~ KDE

≪No excuse for using binning!!≫

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.8
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3.1. Example reactive simulation

Ions
Tot. Cd
Acidity
CEC

Ca2+ Cd2+ CO2 X2Ca CO3
2− HCO3

− H+ OH− X2Cd

1 1 0 0 −1 −0.5 0.5 −0.5 0
0 1 0 0 0 0 0 0 1

0 0 1 0 0 0.5 0.5 −0.5 0
0 0 0 1 0 0 0 0 1

• Days 0-500: Release of Cd2+ into the aquifer.

• Days 2000-2050: Release of disolved CO2.

• CEC present in lower conductivity areas.

Ca2+ + X2Cd ⇌ Cd2+ + X2Ca

Ca2+ + CO3
2− ⇌ CaCO3

CO3
2− + 2H+ ⇌ H2O + CO2

H+ + OH− ⇌ H2O

CO3
2− + H+ ⇌ HCO3

−

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

3. IMPLEMENTATION EXAMPLE

2.9
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3.2. Binning-KDE comparison (Ions)

• Binning: Artificial fluctuations, 

especially for areas/times of low 

particle density.

• KDE: Eliminate fluctuations with 

optimal time-space adaptive 

smoothing.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

3. IMPLEMENTATION EXAMPLE
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3.3. Concentrations overview

• 𝐂𝐝𝟐+ is trapped by cation 

exchange, mobilizing 𝐂𝐚𝟐+ and 

reducing 𝐩𝐇 by carbonate 

precipitation.

• With CO2 injection, 𝐩𝐇 decreases 

causing 𝐂𝐚𝟐+ dissolution, hence 

remobilizing trapped 𝐂𝐝𝟐+ by 

cation exchange.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

3. IMPLEMENTATION EXAMPLE
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3.4. Cadmium particle velocities and Break-Through Curve

Mean mobility of Cadmium Cadmium Break-Through at Outlet 

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

3. IMPLEMENTATION EXAMPLE
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3.4. Cadmium particle velocities and Break-Through Curve

Cadmium Break-Through at Outlet Mean mobility of Cadmium

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

3. IMPLEMENTATION EXAMPLE
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• The presented technique deals with the problem of density reconstruction in particle methods.

• We see evidence of an ideal accuracy vs computational effort ratio.

• Bounded domains with physical boundary conditions are supported.

• It allows us, for instance, to conduct RWPT simulations with geochemical equilibrium reactions.

• A versatile MATLAB code called “bounded adaptive kernel smoothing” (baks.m) has been 

developed and published.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

4. SUMMARY AND CONCLUSIONS

2.13
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5. TO-DO LIST

• Other applications? E.g., reconstruction of noisy experimental observations?

• Link optimal kernel evolution to physical properties in order to skip optimization phase.

2.14
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MIXING-LIMITED REACTIVE TRANSPORT
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1. INTRODUCTION

1.1. The upscaled ADE: Spreading vs Mixing

De Dreuzy et al., 2012

De Anna et al., 2014

• The spreading of solutes in Porous media may be 

represented by the Advection Dispersion Equation

• However, spreading ≠ mixing, and local fluctuations 

are important for chemical reactions.

• Development of particle-based model to simulta-

neously account for the model-scale dispersion and 

the sub-scale mixing and reaction.

3.1
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2.1. Core idea: The particle as a sub-scale

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

2. PROPOSED FORMULATION

• At the model scale, particles represent the solute 

spreading as Advection-Dispersion (RWPT):

d𝑋𝑝 = 𝑣dt + 2𝐷d𝑡𝜉, 𝑐A(𝑥) = 𝜙−1෍

𝑝=1

𝑁

𝑚A,𝑝𝑊(𝑥 − 𝑋𝑝)

• At the local scale, particles are at disequilbrium:

𝐶A,𝑝
′ = 𝐶A,𝑝 − 𝑐A(𝑋𝑝)

• Hence, a Eulerian and a Lagrangian conc. coexist.

• The disequilibrium evolves on particles as:

d𝐶A,𝑝
′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′

0 < 𝜂 < 1, 𝜒 > 0
3.2
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2.2. The simplified local mixing process

Fraction of
“linear mixing”

Rate of
“linear mixing”

Disequilibrium
Generation

Disequilibrium
Destruction

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

2. PROPOSED FORMULATION

d𝐶A,𝑝
′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′

Every change in “ambient” concentration experien-

ced by the particle is the result of hydrodynamic 

spreading. Hence, it triggers a mixing event, in which:

• The “instantaneous” mixing (1 − 𝜂) represents the 

initial process of stretching-enhanced mixing.

• The mixing rate 𝜒 accounts for the first-order mixing 

in a stationary (coalescent) regime, 𝜒 = 𝐷𝜇/𝑠
2.

3.3
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′

Every change in “ambient” concentration experien-

ced by the particle is the result of hydrodynamic 

spreading. Hence, it triggers a mixing event, in which:

• The “instantaneous” mixing (1 − 𝜂) represents the 

initial process of stretching-enhanced mixing.

• The mixing rate 𝜒 accounts for the first-order mixing 

in a stationary (coalescent) regime, 𝜒 = 𝐷𝜇/𝑠
2.

Fraction of
“linear mixing”

Rate of
“linear mixing”
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3.1. Gramling et al.’s experiment (2002)

• “Instantaneous” reaction A + B → AB.

• “Conservative” trnsp. of Atot = A + AB, Btot = B + AB. 

• “Homogeneous” porous medium.

• Reaction did not match well-mixed prediction.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

3. IMPLEMENTATION

Gramling et al., 2002

Gramling et al., 

2002
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3.2. Product mass formation

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

3. IMPLEMENTATION
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3.4. Product concentrations

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

3. IMPLEMENTATION

𝜒 ≈ 10−3 s−1

𝜂 ≈ 0.45

𝐷𝜇 = 7 ⋅ 10−7 cm2s−1; 𝜒 = 𝐷𝜇/𝑠
2

𝑠 ≈ 0.26 mm = 0.2 ⋅ ℓ

d𝐶A,𝑝
′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′

20% of the grain size
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3.5. Main advantages with respect to other “mixing-limitation” models

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

3. IMPLEMENTATION

• Convergence with the number of numerical particles / particle support volume.

• Independent of a “time origin” or “unmixed initial condition”, hence potentially 

applicable to general initial and boundary conditions.

• The model also reproduces the transport of (local) concentration variance
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4.1. Concentration Covariance

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

4. CONCENTRATION VARIANCE AND MIXING

d𝐶A,𝑝
′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′

𝛴AB ≔ 𝐶A
′𝐶B

′

𝜕𝛴AB
𝜕𝑡

= 2𝜂𝐷
𝜕𝑐A
𝜕𝑥

𝜕𝑐B
𝜕𝑥

− 2𝜒𝛴AB − 𝑣
𝜕𝛴AB
𝜕𝑥

+ 𝐷
𝜕2𝛴AB
𝜕𝑥2

d𝑋𝑝 = 𝑣dt + 2𝐷d𝑡𝜉

Covariance
Generation

Covariance
Destruction

Covariance
Transport

Equivalent to Kapoor et al. (1994) concentration variance conservation equation! 
Fundamental difference: For Kapoor et al., 1 − 𝜂 = 𝐷𝜇/𝐷 (stationarity assumption!)

𝜒 = 𝐷𝜇/𝑠
2 3.8
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4.2. Mixing State: Gramling

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

4. CONCENTRATION VARIANCE AND MIXING

𝐹 𝑢 ≔ e−𝑢
2
0׬
𝑢
e𝑟

2
≈

≈ ቊ
𝑢, (𝑢 ≪ 1)

2𝑢 −1, (𝑢 ≫ 1)

• Gramling’s setup:

𝑀AB ≔ 𝑀AB
c +𝑀AB

Σ = න
ℝ

𝑐A 𝑐B d𝑥 + න
ℝ

𝛴AB d𝑥 𝛾AB ≔ 𝑀AB
Σ /𝑀AB

c
• Mixing state:

“Dawson’s
Integral”

𝛾AB 𝑡 = −
1

2𝜒𝑡
𝐹 2𝜒𝑡

𝑀AB
c 𝑡 = 𝐶o

2 2𝐷𝑡/𝜋

𝑀AB
Σ 𝑡 = −

𝜂𝐶o
2 𝐷

𝜋𝜒
𝐹 2𝜒𝑡
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4.2. Mixing State: Gramling
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4.3. Mixing State: “Dirac” Injection

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

4. CONCENTRATION VARIANCE AND MIXING

𝑀AA ≔ 𝑀AA
c +𝑀AA

Σ = න
ℝ

𝑐A
2
d𝑥 + න

ℝ

𝛴AA d𝑥 𝛾AA ≔ 𝑀AA
Σ /𝑀AA

c
• Mixing state:

• “Dirac” injection:

𝛾AA 𝑡 = 𝜂 1 +
𝑡

𝑡o
e−2𝜒𝑡

−𝑓 2𝜒𝑡

𝑓 𝑢 ≔ 𝜕𝐹/𝜕𝑢

≈ ቐ
1, (𝑢 ≪ 1)

−
1

2
𝑢−2, (𝑢 ≫ 1)

3.10



UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering

Hydrogeology Group GHS (UPC-CSIC)

WE-NEED

4.3. Mixing State: “Dirac” Injection

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

4. CONCENTRATION VARIANCE AND MIXING

𝑀AA ≔ 𝑀AA
c +𝑀AA

Σ = න
ℝ

𝑐A
2
d𝑥 + න

ℝ

𝛴AA d𝑥 𝛾AA ≔ 𝑀AA
Σ /𝑀AA

c
• Mixing state:

• “Dirac” injection:

𝑓 𝑢 ≔ 𝜕𝐹/𝜕𝑢

≈ ቐ
1, (𝑢 ≪ 1)

−
1

2
𝑢−2, (𝑢 ≫ 1)

𝛾AA 𝑡 = 𝜂 1 +
𝑡

𝑡o
e−2𝜒𝑡

−𝑓 2𝜒𝑡
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5.1. De Dreuzy et al., 2012 simulations in randomly heterogeneous porous media

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

De Dreuzy et al., 2012

De Dreuzy et al., 2012 3.11
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5.2. Multi-rate model generalization 

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

𝛾AA
∗ 𝑡; 𝜒 =

1 + 𝑡/𝑡o e−2𝜒𝑡

−𝑓 2𝜒𝑡

De Dreuzy et al., 2012

𝛾AA
s.r. 𝑡 = 𝜂 𝛾AA

∗ 𝑡; 𝜒

𝜂, 𝜒
d𝐶A,𝑝

′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′
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5.2. Multi-rate model generalization 

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

De Dreuzy et al., 2012

From a single rate…

… to a multi-rate
𝑝 𝜒

𝛾AA
∗ 𝑡; 𝜒 =

1 + 𝑡/𝑡o e−2𝜒𝑡

−𝑓 2𝜒𝑡

𝛾AA
m.r. 𝑡 = 0׬

∞
𝑝 𝜒 𝛾AA

∗ 𝑡; 𝜒 d𝜒
d𝐶A,𝑝

′

d𝑡
= −

d𝑐A,𝑝
d𝑡

− 𝜒𝑝𝐶A,𝑝
′

𝛾AA
s.r. 𝑡 = 𝜂 𝛾AA

∗ 𝑡; 𝜒

𝜂, 𝜒
d𝐶A,𝑝

′

d𝑡
= −𝜂

d𝑐A,𝑝
d𝑡

− 𝜒𝐶A,𝑝
′
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6. SUMMARY AND CONCLUSIONS

• We have proposed a particle-based random walk formulation to simulate advection-

dispersion-reaction with a sub-scale mixing limitation.

• Core idea: coexistence of a Eulerian (“averaged”) and a Lagrangian (“local”) 

concentration, with a simplistic parametrization of the local mixing process.

• Gramling’s experimental results were accurately reproduced. The adjusted mixing rate 

parameter (𝜒) appears to be capturing the pore-scale diffusion.

• The PDE governing the concentration variance in a REV is mathematically equivalent to 

Kapoor et al.’s (1994) equation, with a different parameter interpretation.

• The incomplete mixing −𝑀AB
Σ in Gramling’s setup follows the Dawson function of 𝑡.

• The proposed model, or a multi-rate version of it, may be also capable of reproducing a 

randomly heterogeneous Darcy sub-scale.
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7. TO-DO LIST

• Towards actual predictability:

• Reach an accurate understanding of the link between the model parameters (𝜂,𝜒) and 

the physics of the sub-scale Stokes flow and diffusion (e.g. Peclet number).

• Explore the apparent ability of the multi-rate extension to account for a heterogeneous 

Darcy flow sub-scale (and link to hydraulic conductivity variance, etc).

• Explore model implications:

• Incomplete mixing effect on different types of reactions (e.g. biochemical)

• Coupling with other processes (e.g. Sorption, heterogeneous reaction…)
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