UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC)

ai

LAGRANGIAN METHODS FOR REACTIVE TRANSPORT IN HETEROGENEOUS POROUS MEDIA

Milan, Italy, June 12th, 2019

Presenting Author:	Guillem SOLE-MARI (UPC)
Co-Authors:	Daniel FERNÀNDEZ-GARCIA (UPC)
	Diogo BOLSTER (Notre Dame)
	Xavier SANCHEZ-VILA (UPC)

TABLE OF CONTENTS

- 1. Introduction: Lagrangian models of transport & RWPT.
- 2. Kernel Density Estimation for reactive transport simulations.
- 3. Mixing-limited reactive transport.

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC)

PART 1: LAGRANGIAN MODELS OF TRANSPORT AND RANDOM WALK PARTICLE TRACKING

INTRODUCTION LAGRANGIAN MODELS AND RWPT

- Modeling of contaminant transport in aquifers is **important** for:
 - Risk assessment
 - Evaluation of **remediation** strategies
 - **Delimitation** of protection perimeters near recovery wells
 - Characterization of the hydraulic properties of the aquifer
 - (...)
- Subsurface is complexly **heterogeneous** and observations are scarce.
- For these reasons, we need models to be **stochastic**.
- Two main groups of methods for numerical modeling of transport:
 - Eulerian
 - Lagrangian

INTRODUCTION LAGRANGIAN MODELS AND RWPT

- Lagrangian methods: Advect the numerical element (particle) and "remove" the advection term from the transport equation.
- Particularly good for **advection-dominated** problems. ($Pe \gg 1$)
- **Random-Walk Particle Tracking** (RWPT): Dispersion is modeled as random fluctuations of the particle displacement in a time step.
- Random variables in RWPT models can simulate processes and fluctuations occurring at the **sub-grid** scale.

Herrera et al., 2009

LAGRANGIAN MODELS AND RWPT

LAGRANGIAN MODELS ARE:

- Efficient
- Versatile
- Mass conservative
- No numerical dispersion
- No instabilities
- Well suited for stoch. modeling
- RWPT: "Multiscale modeling"

BUT...

 Simulation of nonlinear reactive processes require interaction between particles UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC)

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

1.1. <u>The need for a density estimator in particle methods</u>

1. INTRODUCTION

1.1. <u>The need for a density estimator in particle methods</u>

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

1.1. <u>The need for a density estimator in particle methods</u>

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

1.2. Two possible density estimators

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

1.2. Two possible density estimators

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

300

200

100

1.2. Two possible density estimators

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

100

1.2. <u>Two possible density estimators</u>

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

300

200

100

1.2. Two possible density estimators

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

VS

200

1.2. Two possible density estimators

Binning

Kernel Density Estimation (KDE)

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

VS

1.2. Two possible density estimators

Binning

Kernel Density Estimation (KDE)

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

VS

1.2. Two possible density estimators

Kernel Density Estimation (KDE)

1. INTRODUCTION

1.3. Local vs Global optimal KDE

 We developed a locally optimized KDE method and compared it to existing global (constant) KDE approaches.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

1. INTRODUCTION

1.3. Local vs Global optimal KDE

- We developed a locally optimized KDE method and compared it to existing global (constant) KDE approaches.
- The local method is able to mimic the wide variety of local states of the particle plume.

1. INTRODUCTION

1.3. Local vs Global optimal KDE

- We developed a locally optimized KDE method and compared it to existing global (constant) KDE approaches.
- The local method is able to mimic the wide variety of local states of the particle plume.
- As a consequence, it is more accurate and hence, also more efficient than existing methods.

- 1.4. <u>Bounded Grid-Projected Adaptive Kernel Smoothing</u>
- Recently [1] we developed a locally adaptive KDE method for implementation in RWPT.
- However, the kernel approach can be **computationally expensive** for high particle numbers.
- Besides, the issue of **boundary conditions** has (or had) not been addressed.

We present a "hybrid" approach [2] that combines the low computational costs of binning
 & the accuracy of KDE, while accounting for the effect of boundary conditions on the kernel.

Sole-Mari & Fernàndez-Garcia (2018). Lagrangian Modeling of Reactive Transport (...), WRR.
 Sole-Mari et al. (2019). Particle Density Estimation with Grid-Projected (...), Preprint submitted to AWR.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.1. General idea: A "hybrid" density estimation method

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.2. The locally optimal density kernel

2.5

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT 2. THE ADAPTIVE KERNEL METHOD

2.3. Fixed-point iteration

• The kernel evolves recursively.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT 2. THE ADAPTIVE KERNEL METHOD

2.3. Fixed-point iteration

- The kernel evolves recursively.
- Robust convergence even for "bad" input.

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT 2. THE ADAPTIVE KERNEL METHOD

2.4. The former trouble with boundaries

- Conventional KDE fails near boundaries
- Correction to account for boundaries:

Impermeable, Dirichlet or Robin.

- Based on treating the kernel as a diffusive process: (pseudo)-**reflection** principles.
- Applicable to irregular boundaries.

Uncorrected KDE

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.5. <u>Computational efficiency</u>

2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT

2. THE ADAPTIVE KERNEL METHOD

2.5. <u>Computational efficiency</u>

 \ll No excuse for using binning!! \gg

Ions Tot. Cd

Acidity

CEC

0

0

0

0

3.1. Example reactive simulation

- Days 0-500: Release of Cd^{2+} into the aquifer.
- Days 2000-2050: Release of disolved CO₂.
- **CEC** present in lower conductivity areas.

$$Ca^{2+} + X_2Cd \rightleftharpoons Cd^{2+} + X_2Ca$$

$$H^+ + 0H^- \rightleftharpoons H_20$$

$$Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3$$

$$CO_3^{2-} + 2H^+ \rightleftharpoons H_20 + CO_2$$

$$Ca^{2+} Cd^{2+} CO_2 X_2Ca CO_3^{2-} HCO_3^- H^+ 0H^- X_2Cd^-$$

$$1 \quad 1 \quad 0 \quad 0 \quad -1 \quad -0.5 \quad 0.5 \quad -0.5 \quad 0$$

$$0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$$

0

0

0.5

0

0.5

0

-0.5

0

0

1

0

1

3. IMPLEMENTATION EXAMPLE

3.2. Binning-KDE comparison (lons)

• **Binning**: Artificial fluctuations, especially for areas/times of low

particle density.

• **KDE**: Eliminate fluctuations with optimal time-space adaptive smoothing.

3. IMPLEMENTATION EXAMPLE

3.2. Binning-KDE comparison (lons)

• **Binning**: Artificial fluctuations,

especially for areas/times of low particle density.

• **KDE**: Eliminate fluctuations with optimal time-space adaptive smoothing.

3. IMPLEMENTATION EXAMPLE

- 3.3. Concentrations overview
- Cd²⁺ is trapped by cation
 - exchange, mobilizing Ca^{2+} and

reducing pH by carbonate

precipitation.

With CO₂ injection, pH decreases
 causing Ca²⁺ dissolution, hence
 remobilizing trapped Cd²⁺ by

cation exchange.

3. IMPLEMENTATION EXAMPLE

- 3.3. Concentrations overview
- Cd²⁺ is trapped by cation
 - exchange, mobilizing \mbox{Ca}^{2+} and
 - reducing pH by carbonate
 - precipitation.
- With CO₂ injection, pH decreases
 causing Ca²⁺ dissolution, hence
 remobilizing trapped Cd²⁺ by
 - cation exchange.

0.9

0.8

0.7

 $\begin{array}{c} \left< 0.6 \\ \left. n \right| / \mathrm{PO} \\ \left. n \right| \\ \left. n \right| \\ \left. 0.5 \\ \left. 0.4 \right| \\ \left. 0.4 \right| \\ \left. n \right| \\$

0.3

0.2

0.1

0

0

1000

2000

t (d)

3000

UNIVERSITAT POLITÈCNICA DE CATALUNYA Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC) 2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT **3. IMPLEMENTATION EXAMPLE**

3.4. Cadmium particle velocities and Break-Through Curve

 \cdots Without CO₂ release

— With CO_2 release

4000

5000

Mean mobility of Cadmium

Cadmium Break-Through at Outlet

0.9

0.8

0.7

 $\begin{array}{c} \left< 0.6 \\ \left. n \right| \\ \left< 0.5 \\ \left| n \right| \\ \left< 0.4 \right. \end{array} \right>$

0.3

0.2

0.1

0

0

1000

2000

t (d)

3000

UNIVERSITAT POLITÈCNICA DE CATALUNYA Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC) 2) KDE FOR REACTIVE TRANSPORT SIMULATION WITH RWPT **3. IMPLEMENTATION EXAMPLE**

3.4. Cadmium particle velocities and Break-Through Curve

 \cdots Without CO₂ release

4000

5000

---With CO₂ release

Mean mobility of Cadmium

Cadmium Break-Through at Outlet

- The presented technique deals with the problem of **density reconstruction** in particle methods.
- We see evidence of an ideal accuracy vs computational effort ratio.
- Bounded domains with physical **boundary conditions** are supported.
- It allows us, for instance, to conduct RWPT simulations with **geochemical equilibrium reactions**.
- A versatile MATLAB code called "**bounded adaptive kernel smoothing**" (baks.m) has been developed and published.

5. TO-DO LIST

• **Other applications**? E.g., reconstruction of noisy experimental observations?

• Link optimal kernel evolution to **physical properties** in order to skip optimization phase.

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Civil and Environmental Engineering Hydrogeology Group GHS (UPC-CSIC)

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

1. INTRODUCTION

1.1. <u>The upscaled ADE: Spreading vs Mixing</u>

- The **spreading of solutes** in Porous media may be represented by the Advection Dispersion Equation
- However, spreading \neq mixing, and local fluctuations

are important for chemical reactions.

 Development of particle-based model to simultaneously account for the model-scale dispersion and the sub-scale mixing and reaction.

De Anna et al., 2014

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.1. Core idea: The particle as a sub-scale

• At the **model scale**, particles represent the solute spreading as Advection-Dispersion (RWPT): $\sum_{n=1}^{N}$

$$\mathrm{d}X_p = v\mathrm{d}t + \sqrt{2D\mathrm{d}t}\xi, \qquad \overline{c}_{\mathrm{A}}(x) = \phi^{-1}\sum_{p=1}m_{\mathrm{A},p}W(x - X_p)$$

• At the local scale, particles are at disequilbrium:

$$C'_{\mathrm{A},p} = C_{\mathrm{A},p} - \overline{c}_{\mathrm{A}}(X_p)$$

- Hence, a Eulerian and a Lagrangian conc. coexist.
- The disequilibrium evolves on particles as:

 $0 < \eta < 1, \ \chi > 0$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.1. Core idea: The particle as a sub-scale

• At the **model scale**, particles represent the solute spreading as Advection-Dispersion (RWPT):

$$\mathrm{d}X_p = v\mathrm{d}t + \sqrt{2D\mathrm{d}t}\xi, \qquad \overline{c}_\mathrm{A}(x) = \phi^{-1}\sum_{p=1}m_{\mathrm{A},p}\,W(x-X_p)$$

• At the local scale, particles are at disequilbrium:

$$C'_{\mathrm{A},p} = C_{\mathrm{A},p} - \overline{c}_{\mathrm{A}}(X_p)$$

- Hence, a Eulerian and a Lagrangian conc. coexist.
- The disequilibrium evolves on particles as:

 $0 < \eta < 1, \ \chi > 0$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 2. PROPOSED FORMULATION

2.2. The simplified local mixing process

- The "instantaneous" mixing (1η) represents the initial process of **stretching**-enhanced mixing.
- The mixing rate χ accounts for the first-order mixing in a **stationary** (coalescent) regime, $\chi = D_{\mu}/s^2$.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

В

3. IMPLEMENTATION

А

- 3.1. Gramling et al.'s experiment (2002)
- "Instantaneous" reaction $A + B \rightarrow AB$.
- "Conservative" trnsp. of $A_{tot} = A + AB$, $B_{tot} = B + AB$.
- "Homogeneous" porous medium.
- Reaction did not match well-mixed prediction.

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

3. IMPLEMENTATION

3.2. <u>Product mass formation</u>

3. IMPLEMENTATION

3.4. Product concentrations

3. IMPLEMENTATION

- 3.5. Main advantages with respect to other "mixing-limitation" models
- Convergence with the **number of numerical particles** / particle support volume.
- Independent of a "time origin" or "unmixed initial condition", hence potentially applicable to **general initial and boundary conditions**.
- The model also reproduces the transport of (local) concentration variance

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 4. CONCENTRATION VARIANCE AND MIXING

4.1. <u>Concentration Covariance</u>

Equivalent to **Kapoor et al. (1994)** concentration variance conservation equation! Fundamental difference: For Kapoor et al., $1 - \eta = D_{\mu}/D$ (stationarity assumption!)

$$\chi = D_{\mu}/s^2 \qquad \qquad 3.8$$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 4. CONCENTRATION VARIANCE AND MIXING

4.2. Mixing State: Gramling

- Mixing state: $M_{AB} \coloneqq M_{AB}^{\overline{c}} + M_{AB}^{\Sigma} = \int_{\mathbb{R}} \overline{c}_A \, \overline{c}_B \, dx + \int_{\mathbb{R}} \Sigma_{AB} \, dx \qquad \gamma_{AB} \coloneqq M_{AB}^{\Sigma} / M_{AB}^{\overline{c}}$
- Gramling's setup:

A B

$$\begin{split} M_{AB}^{\overline{c}}(t) &= C_0^2 \sqrt{2Dt/\pi} \\ M_{AB}^{\Sigma}(t) &= -\frac{\eta C_0^2 \sqrt{D}}{\pi \chi} F\left(\sqrt{2\chi t}\right) \\ \gamma_{AB}(t) &= -\frac{1}{\sqrt{2\chi t}} F\left(\sqrt{2\chi t}\right) \\ F(u) &\coloneqq e^{-u^2} \int_0^u e^{r^2} \approx \\ \text{``Dawson's} &\approx \begin{cases} u, & (u \ll 1) \\ (2u)^{-1}, & (u \gg 1) \end{cases} \end{split}$$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 4. CONCENTRATION VARIANCE AND MIXING

4.2. Mixing State: Gramling

• Mixing state:
$$M_{AB} \coloneqq M_{\overline{AB}}^{\overline{c}} + M_{AB}^{\Sigma} = \int_{\mathbb{R}} \overline{c}_A \, \overline{c}_B \, dx + \int_{\mathbb{R}} \Sigma_{AB} \, dx \qquad \gamma_{AB} \coloneqq M_{\overline{AB}}^{\Sigma} / M_{\overline{AB}}^{\overline{c}}$$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 4. CONCENTRATION VARIANCE AND MIXING

4.3. <u>Mixing State: "Dirac" Injection</u>

- Mixing state: $M_{AA} \coloneqq M_{AA}^{\overline{c}} + M_{AA}^{\Sigma} = \int_{\mathbb{R}} \overline{c}_A^2 \, dx + \int_{\mathbb{R}} \Sigma_{AA} \, dx \qquad \gamma_{AA} \coloneqq M_{AA}^{\Sigma} / M_{AA}^{\overline{c}}$
- "Dirac" injection:

А

$$\gamma_{AA}(t) = \eta \left[\left(1 + \sqrt{\frac{t}{t_o}} \right) e^{-2\chi t} - f\left(\sqrt{2\chi t}\right) \right]$$

$$f(u) \coloneqq \frac{\partial F}{\partial u} \approx \begin{cases} 1, & (u \ll 1) \\ -\frac{1}{2}u^{-2}, & (u \gg 1) \end{cases}$$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR. 4. CONCENTRATION VARIANCE AND MIXING

4.3. <u>Mixing State: "Dirac" Injection</u>

• Mixing state: $M_{AA} \coloneqq M_{AA}^{\overline{c}} + M_{AA}^{\Sigma} = \int_{\mathbb{R}} \overline{c}_A^2 \, dx + \int_{\mathbb{R}} \Sigma_{AA} \, dx \qquad \gamma_{AA} \coloneqq M_{AA}^{\Sigma} / M_{AA}^{\overline{c}}$

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

5.1. De Dreuzy et al., 2012 simulations in randomly heterogeneous porous media

De Dreuzy et al., 2012

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

5.1. <u>De Dreuzy et al., 2012 simulations in randomly heterogeneous porous media</u>

De Dreuzy et al., 2012

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

3) A LAGRANGIAN MODEL OF MIXING-LIMITED REACTIVE TR.

5. DARCY FLOW SUB-SCALE

- We have proposed a particle-based **random walk** formulation to simulate advectiondispersion-reaction with a **sub-scale mixing limitation**.
- Core idea: **coexistence** of a **Eulerian** ("averaged") and a **Lagrangian** ("local") concentration, with a simplistic parametrization of the **local mixing process**.
- Gramling's **experimental results** were accurately reproduced. The adjusted mixing rate parameter (χ) appears to be capturing the **pore-scale diffusion**.
- The PDE governing the **concentration variance** in a REV is mathematically equivalent to **Kapoor et al.'s (1994) equation**, with a different **parameter interpretation**.
- The incomplete mixing $-M_{AB}^{\Sigma}$ in Gramling's setup follows the **Dawson function** of \sqrt{t} .
- The proposed model, or a **multi-rate** version of it, may be also capable of reproducing a randomly heterogeneous **Darcy sub-scale**.

7. TO-DO LIST

- Towards actual **predictability**:
 - Reach an accurate understanding of the **link** between the **model parameters** (η, χ) and the **physics** of the sub-scale Stokes flow and diffusion (e.g. Peclet number).
 - Explore the apparent ability of the multi-rate extension to account for a heterogeneous
 Darcy flow sub-scale (and link to hydraulic conductivity variance, etc).
- Explore model **implications**:
 - Incomplete mixing effect on different types of reactions (e.g. biochemical)
 - Coupling with **other processes** (e.g. Sorption, heterogeneous reaction...)