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Deliverable summary. 

This report presents a new statistical model (generalized sub-Gaussian, GSG) for the 

interpretation of hydrological properties, Y, as well as many other variable, exhibiting a clear 

non-Gaussian behavior. One common manifestation of non-Gaussianity is that whereas 

frequency distributions, pdfs, of Y often exhibit mild peaks and light tails, those of 

increments are generally symmetric with peaks that grow sharper, and tails that become 

heavier, as separation scale or lag between pairs of Y values decreases. We derive analytical 

expressions for pdfs of data and the associated spatial increments as well as corresponding 

lead statistical moments. In our GSG model the peak and tails of the increments pdf scale 

with lag, in line with the characteristic behavior exhibited by many hydrological variables. 

The model allows one to estimate, accurately and efficiently, all relevant parameters by 

analyzing jointly sample moments of data and incremental series. We illustrate key features 

of our new model and method of inference on a set of neutron porosity data from a deep 

borehole. Future developments of this work include the analysis of lead-order effects that 

non-Gaussian heterogeneity described by the GSG model have on the stochastic description 

of flow and transport. 
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1. Introduction 

Efforts aimed at the characterization of the spatial variability of subsurface properties 

typically focus on the identification of a geostatistical model consistent with the key features 

exhibited by data and their main statistics. The study of a wide range of datasets of Earth, 

environmental and several other variables frequently highlights that increments 

     Y Ys Y  x y  of a variable Y calculated between vector locations x and y (s = ||x  y|| 

being separation scale or lag) are characterized by sample distributions with sharp peaks and 

heavy tails, a behavior which tends to become increasingly marked as the lag decreases. 

Documented examples of such behavior for hydrological and soil science variables include, 

among others, datasets of porosity (Painter, 1996; Guadagnini et al., 2014, 2015; Riva et al., 

2015), permeability (Painter, 1996; Siena et al., 2012; Riva et al., 2013a, b), hydraulic 

conductivity (Liu and Molz, 1997; Meerschaert et al., 2004; Guadagnini et al., 2013), hydraulic 

parameters characterizing unsaturated soils (Guadagnini et al., 2013), soil and sediment texture 

data (Guadagnini et al., 2014) and pore scale velocities (Siena et al., 2014). It is then clear that 

the assumption of Gaussianity for Y is not consistent with the above-described characteristics 

of statistical scaling displayed by the sample probability distribution (and main statistical 

moments) of increments. A statistical model that captures the scale-dependent features of the 

probability density of Y  in a unified and consistent manner has recently been proposed by 

Riva et al. (2015) and Panzeri et al. (2016). These authors view ( ) ( )Y Y Y  x x  as a spatial 

random field, Y  and ( )Y  x  respectively being the ensemble mean and a local zero-mean 

fluctuation. The latter can be expressed through the following generalized sub-Gaussian (GSG) 

model  

     'Y U Gx x x  (1) 

where x is a position vector,  G x  is (generally, but not necessarily) a multi-scale Gaussian 

random field and  U x  is a subordinator independent of G. The subordinator U consists of 

statistically independent identically distributed (iid) non-negative random values at all points 

x. Several choices about the probability density function shape, pdf, of U are possible. In this 

context, here we study the main features of the GSG model (1) by considering (i) log-normal 

and (ii) Gamma distributional form of the subordinator U . The remainder of the study is 

structured as follows. Section 2 illustrates the details of the analytical formulation of the GSG 
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model. Section 3 describes methods of inference associated with the diverse subordinators. In 

Section 4 we present an application of the GSG models to field data and we demonstrate the 

remarkable features of our GSG model to interpret within a unique theoretical framework the 

scaling properties of sample pdf of Y and of its of increments. 

2. Theoretical framework 

We introduce the following notation to define 'Y  at two points, x1 and x2, 

           1 1 1 2 2 2
' , 'Y U G Y U G Y U G Y U G     

1 1 1 2 2 2
x x x x x x . (2) 

The bivariate pdf of Y1 and Y2 is 

     
1 2 1 2 1 2

1 2 2 1

, 1 2 1 2

1 2 2 10 0

, ,
Y Y U U G G

y y du du
f y y f u f u f

u u u u

 
 

  
 

   (3) 

where  
iU i

f u  is the pdf of i
U  (i = 1, 2) and 

1 2G G
f  is the bivariate pdf of  1 2

,G G  given by 

 

2 2
1 2 1 2

2 22 2
1 2 1 2

1 2

1
2

2 1

1 2

2 2
1 2

,
2 1

G

G G

y y y y

u u u u

G G

G G

y y e
f

u u


 

 

 
   

 
  

 
 

 

. (4) 

Here, 
2

G
  is the variance of G and G

  is the coefficient of correlation between G1 and G2. 

Substituting (4) into (3) yields the following bivariate pdf of Y1 and Y2, 

     
 

2 2
1 2 1 2

2 22 2
1 2 1 2

1 2 1 2

1
2

2 1
2 1

, 1 2 1 2
2 2

2 10 0

1
,

2 1

G

G G

y y y y

u u u u

Y Y U U

G G

du du
f y y f u f u e

u u


 

 

 
      

  



  . (5) 

The marginal pdf of Y' can been obtained as 

   

   
 

     

1 2

2 2
1 2 1 2

2 22 2
1 21 2

1 2

1 2

2 2

2 2 2 2
2 2

1 2 2

' , 1 2 1

1
2

2 1
2 1

1 2 1
2 2

2 10 0

1 1

2 22

1 2 1 2

20 0 0

,

1

2 1

1 1

2 2

G

G G

G G

Y Y Y

y y y y

u uu u

U U

u uG G

y y

u u

U U U

G G

f y f y y dy

du du
f u f u e dy

u u

du du
f u f u e du f u e

u


 

 

 

 





 
      

   

  

   



 
 

  
  

 

 



  

  
2

2
u

 (6) 

The first order statistical moment of Y'  is identically zero, whereas variance, kurtosis and q-th 

order moment can be expressed respectively as  

 
2

2 2 2 2 2 2

' 2 2 2

0

( )
Y G U G

Y' = y f y dy u f u du U 
 



   , (7) 
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2

4 4 4 4 4 4

' 2 2 2

0

( ) 3 3
Y G U G

Y' = y f y dy u f u du U 
 



   , (8) 

while the q-th order moment is 

  
 

2

1

2

2 2 2

0

2 1 1 1
( )

22

q
q

q q q q

Y G U

q
Y' = y f y dy u f u du





 



   
  

 
  ,  with q > 1. (9) 

The probability density function of incremental data, Y , is given by 

   

   
 

 

   

 
 

1 2

2 2
2 2 2 2

2 22 2
1 21 2

1 2

2

2 2 2
1 2 1 21 2

2 2 2

1
2

2 1
2 1

1 2 2
2 2

2 10 0

1

221 2

2 1
2 2

0 0 1 2 1 2

,

1

2 1

1

2 2

G

G G

G G

Y Y Y

y y y y y y

u uu u

U U

G G

y

u u u uU U

G G

f y f y y y dy

du du
f u f u e dy

u u

f u f u
e du du

u u u u


 

 

 

 







    
     
   




 

 

   

 
 

  
  

 


 



  

 

 (10) 

The first order moment of Y is identically zero, whereas variance, kurtosis and q-th order 

moment can be expressed respectively as  

     
1 2

2 2 2 2 2

1 2 1 2 1 2 2 1

0 0

( ) ( ) 2
Y G G U U

Y = y f y d y u u u u f u f u du du 
  





          (11) 

     
1 2

2
4 4 4 2 2

1 2 1 2 1 2 2 1

0 0

( ) ( ) 3 2
Y G G U U

Y = y f y d y u u u u f u f u du du 
  





          (12) 

        
1 2

1

2 22 2
1 2 1 2 1 2 2 1

0 0

( ) ( )

1
2 1 1 2

22

q q

Y

qq q
qG

G U U

Y = y f y d y

q
u u u u f u f u du du












 

    

 
      

 



 

 (13) 

while the q-th order moment of the absolute value of increments is given by 

     
1 2

1

2 22
1 2 1 2 1 2 2 1

0 0

( ) ( )

1
2 2

22

q q

Y

qq
q

G

G U U

Y = y f y d y

q
u u u u f u f u du du












 

    

 
    

 



 

  (14) 

The Covariance of Y between two points x1 and x2, is defined as: 
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1 2 1 2

1 2 2 1 1 2 1 2

, ' '

,

Y

G

C x x Y Y

U U G G U U C



 

x x

x x x x x x x x
 (15) 

where 2

G G G
C    is the covariance of G . From (15) one derives  

  2 2 2
0

Y Y G
C U   ,       

2
0

Y G
C s U C s  ,        

 
 

2

2 2

Y

Y G

Y

UC s
s

U
 


   (16) 

Note that according to (16) the sub-Gaussian covariance Y
C  is discontinuous at r = 0, 

exhibiting a nugget effect. This observation also implies that nugget effects, attributed in the 

literature to variability of Y at scales smaller than the sampling interval and/or to measurement 

errors, may in fact be (at least in part) a symptom of non-Gaussianity. 

2.1 Log-normal subordinator 

Here, we assume that U1 and U2 are lognormally distributed according to 

  2
ln 0, 2N  , i.e. 

 
 

 

2

2

ln

2 2

2 2

i

i

u

U i

i

e
f u

u



 







 with i = 1, 2 and 2  . (17) 

Substituting (17) into (6) yield the following marginal pdf of Y'  

 
 

 

2 2

2 2 2

ln1

2 2

' 2

0

1

2 2

G

u y

u

Y

G

du
f y e

u



 

 
   
  

  . (18) 

Equation (18) coincides with (10) of Riva et al. (2015). Setting x / G
  = u, (18) becomes  

 
 

 

2 2

2 2

ln /1

2 2

' 2

0

1

2 2

Gx y

x

Y

dx
f y e

x





 

 
   
  

  . (19) 

Note that (19) coincides with a Normal-Log-Normal distribution, NLN. The latter have been 

shown to well represent some financial (Clark, 1973) and environmental (Guadagnini et al.. 

2015) data. Making use of (7) - (9), variance, kurtosis, standardized kurtosis and q-th order 

moments of Y' are respectively given by 

 
2

2 22 2

G
Y' = e





 (20) 

 
2

8 24 4
3

G
Y' = e





 (21a) 
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2

4

4 2

2
2

3
Y

Y'
e

Y'





    (21b) 

    
2

2

1

2
2

2

2 1 1 1

22

q
q

q

q q

G

q
Y' = e








   
  
 

    with q > 1. (22) 

Substituting (17) into (10) yields the following pdf of increments Y  

 
 

 
 

 

2
2 2

2 12 2 2 2
1 2 1 2

1 1
ln ln

2 22

2 122 2 2
0 0 2 1 1 2 1 2

1

22 2 2

G G

y
u u

u u u u

Y

G G

e
f y du du

u u u u u u

 



   

 
   

      


 

  
   (23) 

The latter coincides with (17) of Riva et al. (2015). Making use of (11)-(12), variance, kurtosis 

and standardized kurtosis of Y  are then given, respectively, by 

    
2 2

2 22 2
2

G G
Y = e e

 
 

 
   (24) 

      
2 2 2

4 2 2 4 24 4 2
6 1 2 4

G G G
Y = e e e

  
  

  
     (25a) 

 
 

 

2

2

2 2
4 2

2

2

2

2 22

1
1

2

1
3

Y

G

eY
e

eY
















    
    
     

. (25b) 

As 2  , distributions of 'Y  and Y  tends to the Gaussian. Otherwise the shape of Y
f
  

scales with the correlation coefficient of G or, equivalently, with lag as quantified by Y


 . In 

other words, the peak of Y
f
  sharpens and its tails become heavier with 

G
 . Figure 1 illustrates 

how excess kurtosis, 3
Y



 , varies with 

G
  and  . At small lags (large 

G
 ) 3

Y



  exceeds 

zero by a significant margin, even at large values of  (when the pdf of 'Y  is near-Gaussian). 

Excess kurtosis decreases as 
G

  decreases (lag increases), rendering the peak of Y
f
  less sharp 

and its tails lighter. When 1.8  , the asymptotic value of 3
Y



  at large lags is very small 

(<< 1) and Y
f
  is virtually Gaussian. Included in Figure 1 are horizontal lines depicting excess 

kurtosis of the pdf of 'Y , 3
Y

  . From (21b) and (25b) it follows that when 

2 ln 3 0.95    , Y
f
  at small lags has sharper peaks and heavier tails than does 'Y

f , the 

opposite being true at large lags. When 2 ln 3    the pdf of 'Y  has higher peaks and 
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heavier tails than the pdfs of Y  regardless of lag. This behavior of Y
f
  is indicated by Figure 

1. Figure 2 depicts on arithmetic and semi logarithmic scales Y
f
  for 1.0

G
  , 1.7   and 

three values of 
G

 . Also shown for comparison is a Gaussian distribution having the same 

mean and variance as Y .  

 

 

Figure 1. Excess kurtosis of Y  (continuous curves) and of 'Y  (horizontal dashed lines) versus G
  

for five values of  . 

 

 

Figure 2. Y
f
  (23) on arithmetic (a) and semi-logarithmic (b) scales for 1.0

G
  , 1.7   and three 

values of G
  (continuous curves). Also shown are Gaussian distributions having the same mean and 

variance as Y  (dashed curves). 
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As noted earlier, Y
f
  exhibits sharp peak and heavy tails when 

G
  = 0.99 (at small lag) 

and becomes virtually Gaussian as 
G

  decreases (lag increases). 

The q-th order moments of Y  and Y  are given respectively by 

  
 

   

2 2
2 1

2

ln ln
1

2 22 2 2 12 2
1 2 1 22

2 10 0

1 1
2 1 1 2

22 2 2

u u
qq q

qq G

G

du duq
Y = u u u u e

u u




  


  

 
      

  
   (26) 

 
   

2 2
2 1

2

ln ln
2

2 22 2 2 12
1 2 1 22

2 10 0

2 1
2

22 2

q
u u

q q
q G

G

du duq
Y = u u u u e

u u




  


  

 
    

 
  . (27) 

The variogram of Y', Y
 , can be derived from (24) as 

           
2 2 2 2 2

2

2 2 2 2 22 2
1

2
Y G G G G

Y
e e e e e

    
    

    


      , (28) 

G
  being the variogram of G . The covariance, Y

C , is in turn 

       
2 2

2 222
0 , 0

Y G Y G
C C s e Ce

 


 
   , (29) 

Equation (29) in turn yields the integral scale of Y' to be 

 
2

2

Y G
I e I

 
 , (30) 

being 
G

I  the integral scale of G . It is thus seen that a lognormal subordinator dampens, but 

does not destroy, the covariance structure of G; the smaller is  the shorter is the integral scale 

of Y'. When   2, Y
I  G

I . The integral scale of Y' vanishes only in the limit as    , 

i.e. when the variance of subordinator U tends to infinity. 

2.2 Gamma subordinator 

Here, we assume that U1 and U2 are distributed according to a Gamma distribution, i.e., 

 
 

1
i

i

u

k

i

U i k

u e
f u

k











,  with i = 1, 2; k > 0;  > 0, (31a) 

where k and  respectively are the shape and scale parameter and  

  1

0

k x
k x e dx



 
    k > 0 (31b) 
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is the Gamma function. Note that the Exponential subordinator can be obtained by (31a) setting 

k = 1 and  = 1 /. According to (31a) mean and variance of Ui are given respectively by k 

and k2. 

Substituting (31a) into (6) yield the following marginal pdf of Y'  

 
 

2 2

2

' 2 22 2

20

1 1 1
exp

22

u

k

Y k

GG

y
f y u e du

k u



 





 

  
  

 . (32) 

Making use of (7) - (9) and (31a), variance, kurtosis, standardized kurtosis and q-th order 

moments of Y' are respectively given by  

 

 
 2 2 2 2 2

2
1

G G

k
Y' k k

k
   

 
  


 (33) 

 

 
4 4 4 4 4

4
3 3 ( 1)( 2)( 3)

G G

k
Y' k k k k

k
   

 
    


 (34a) 

 

4

2
2

( 2)( 3)
3

1
Y

Y' k k

k kY'


 
 


 (34b) 

    

 

1

22 1 1 1

22

q
q

q q q

G

k qq
Y'

k
 





    
   

 
. (35) 

Figure 3 depicts on semi logarithmic scales  'Y
f y  for 1.0

G
  ,  = 1 and five values 

of k. Also shown for comparison is a Gaussian distribution having the same mean and variance 

as Y'. In Figure 4 we investigate combinations of parameters (k, , 2

G
 ) leading to pdfs of Y' 

that are consistent with typical permeability field data. Figure 4a depicts the variance Y', as 

rendered by (33) versus k for two selected values of , i.e.,  = 0.2, 0.5. Figure 4b depicts the 

pdf of  
iU i

f u  (31a), for k = 10 and  = 0.2, 0.5. Figure 4c reports  'Y
f y  for 2

G
  = 1, k = 10 

and  = 0.2, 0.5.  
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Figure 3. 'Y
f  (32) on semi-logarithmic  scales for 

2

G
  = 1.0,  = 1 and five values of k  Also shown 

are Gaussian distributions having the same mean and variance as Y' (dashed curves). 

 

 

Figure 4. (a) Variance of Y' (33) versus k for  = 0.2, 0.5; (b)  
iU i

f u  (31a) for k = 10 and  = 0.2, 

0.5; (c) 'Y
f  (32) for 

2

G
  = 1.0, k = 10 and  = 0.2, 0.5. Also shown are Gaussian distributions having 

the same mean and variance as Y' (dashed curves).  
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Substituting (31a) into (10) yields the following pdf of Y   

 
 

 
 

 

 

2

1 2 2 2 2
1 2 1 2

1 1

221

1 2

2 12 2 2 2
0 0 1 2 1 2

1

2 2

G G

y
u u

u u u uk

Y k

G G

u u e
f y du du

k u u u u

  

  


  

  


 

  
  . (36) 

Making use of (11)-(12), variance, kurtosis and standardized kurtosis of Y  are then given, 

respectively, by  

  2 2 2
2 1 1

G G
Y = k k      (37) 

      4 4 4
12 1 3 1 3 1

G G G G
Y k k k k               

 
 (38a) 

      

  

4

2 2
2

1 3 1 3 1
3

1 1

G G G

Y

G

k k kY

Y k k

  





          
 

  

. (38b) 

Note that according to (38b) Y


  does not depend on . Figure 5 depicts the excess 

kurtosis of Y  and of Y'  versus G
  for six values of k. At small lags (large 

G
 ) 3

Y



  

exceeds zero by a significant margin, even at large values of k. Excess kurtosis decreases as 

G
  decreases (lag increases), rendering the peak of Y

f
  less sharp and its tails lighter. When 

10k  , the asymptotic value of 3
Y



  at large lags is very small (<< 1) and Y

f
  is virtually 

Gaussian. When 1k  , Y
f
  at small lags has sharper peaks and heavier tails than does 'Y

f , the 

opposite being true at large lags. Figure 6 depicts on arithmetic and semi logarithmic scales 

Y
f
  for 1.0

G
  , k = 10 and  = 0.2 and three values of 

G
 . Also shown for comparison is a 

Gaussian distribution having the same mean and variance as Y . As noted in the case of the 

log-normal subordinator, Y
f
  exhibits sharp peak and heavy tails when 

G
  = 0.99 (at small 

lag) and tends to the Gaussian distribution as 
G

  decreases (lag increases). 
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Figure 5. Excess kurtosis of Y  (continuous curves) and of Y'  (horizontal dashed lines) versus G
  

for six values of k. 

 

 

Figure 6. Y
f
  (36) on (a) arithmetic and (b) semi logarithmic scales for 1.0

G
  , k = 10,  = 0.2 and 

three values of 
G

  (continuous curves). Also shown are Gaussian distributions having the same mean 

and variance as Y  (dashed curves).  

 

The q-th order moments of Y  and Y  are given respectively by  

  
 

 
 1 2

11

2 2 1 12 2
1 2 1 2 1 2 2 12 2

0 0

1 1 1
2 2

22

q
qq q

u u
q k kG

Gk

q
Y = u u u u u u e du du
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   (39) 

 
 

 1 2

11

1 1 2 22
1 2 1 2 1 2 2 12 2

0 0

1 1
2 2

22

qq
u uqq k kG

Gk

q
Y = u u u u u u e du du
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   (40) 
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The variogram of Y'  can be obtained directly from (37) as 

 

 
  

2

2 2 2 2

2

1
1 1 1

2

G

Y G G G

G

Y k
k k k

k


     



    
      

  
. (41) 

Note that Y
  includes a nugget effect (a constant independent of the lag). From (41) and (33) 

we obtain an expression for the covariance of Y' , 

     2 2 2 2
0 1 , 0

Y G Y G
C k k C s C k      . (42) 

This in turn yields the integral scale of Y'  to be 

2 2

Y G
I I k    (43) 

It is thus seen that a gamma subordinator can either dampen (but not destroy) or amplify the 

covariance structure of G, depending on the set of parameters (k, ) characterizing it. Since k 

and  can take only strictly positive (non-zero) values, then Y
I  G

I  only for very small values 

of both of them (i.e., small values of the variance of U). 

3. Parameter estimation methods 

A straightforward way to infer model parameters from a dataset relies on the so-called 

Method of moments, which takes advantage of the analytical expressions of the statistical 

moments of Y   and Y  provided in Section 2. The method allows to obtain explicit estimates 

of the model parameters in replacing the ensemble moments by their sample counterparts. In 

the following, we detail the methodology developed for the log-normal and for the Gamma 

subordinator. 

3.1 Log-normal subordinator  

Parameter Estimation Method a 

Method a relies on the marginal frequency distribution and moments of 'Y , which, for 

the log-normal subordinator, depend only on two parameters,  and 
G

 . One therefore cannot 

estimate 
G

  by this method. Explicit estimates 
a

  and _G a
  of parameters  and 

G
 can be 

obtained by replacing the second and fourth moments, 
2
'Y  and 

4
'Y , of 'Y  in (20) and 

(21a) by their sample counterparts, 
2

Y
M  and 

4

Y
M . This leads to the following expressions: 
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4

2

2

1
2 ln

4 3

Y

a
Y

M
=

M
   (44) 

2

2

_ 2(2 )a

Y

G a

M

e





 . (45) 

 

Parameter Estimation Method b 

Method b allows to obtain estimates of all three parameters , 
G

  and 
G

  characterizing 

'Y  and Y  by relying jointly on samples of both functions. Replacing 
2
'Y , 

2
Y  and 

4
Y  in (20), (24) and (25a) by their sample counterparts 

2

Y
M , 

2

Y
M

 and 
4

Y
M

  provides 

explicit estimates 
b

 , _G b
  and 

G
  of the three parameters as  

2 ln
b

x    (46) 

2

2

_ 2(2 )b

Y

G b

M

e





  (47) 

2

2

(2 ) 2

(2 )2

_
2

b

b

Y

G

G b

M
e

e












  , (48) 

where 

2

2

2

2 1
2

Y

Y

M
d

M

  
    
   

,    

 
4

2

2

1
6

Y

Y

M
f

M



  ,    

1

22
4

2

d d f
x

  
  
  

. (49) 

The joint use of Y   and Y  is therefore recommended since it allows to (a) estimate parameter 

G
  to diagnose the dependency of increment statistics on the lag, and (b) enlarge the set of data 

on which sample moments are computed. With this methodology, it is then possible to obtain 

one set of  , ,
G G

    estimates for each investigated lag. According to our theoretical 

framework, it is expected that values of ,
G

   remain (approximately) constant with lag. 
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3.2 Gamma subordinator  

We start by rewriting (32) as  

 
   

2

2

1

22

'

0

1

2

G

yx

xk

Y k

G

f y x e dx
k



 

  





 , (50) 

where, 
2 G

x u  . In a similar way, we rewrite (36) as  

 
   

 
 

 

2

2 2

1 1

221 1

2
2 2 2

0 0

1

2 2

G G

y
x z

x z xzk k

Y k

G G

z x e
f y dxdz

k x z xz

 

  


  

    


 

  
  ,  (51) 

where 
1 G

z u  , and 
2 G

x u  . It is then clear from (50) and (51) that parameters   and 
G

  

cannot be independently estimated. In the following we apply the method of moments to 

estimate the following three parameters: k, 
G

C   and 
G

 . 

 

Parameter Estimation Method a 

Method a relies on the marginal frequency distribution and moments of 'Y  which depend 

only on two parameters, k and C. One therefore cannot estimate 
G

  by this method. Explicit 

estimates a
k  and 

a
C  of parameters k and C can be obtained by replacing the second and fourth 

moments, 
2
'Y  and 

4
'Y , of 'Y  in (33) and (34a) by their sample counterparts, 

2

Y
M  and 

4

Y
M . This leads to the following expressions: 

       

 

2 4 2 2
2 4 2 4 4 2

2
2 4

15 9 42

2 3

Y Y Y Y Y Y

a

Y Y

M M M M M M

k

M M

     
  


 
  

 (52) 

 

2

1

Y

a

M
C

k k



. (53) 

 

Parameter Estimation Method b 

Method b provides estimates of all three parameters k, C and 
G

  characterizing 'Y  and 

Y  by relying jointly on sample moments of both functions. Replacing 
2
'Y , 

2
Y  and 
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4
Y  in (33), (37) and (38a) by their sample counterparts 

2

Y
M , 

2

Y
M

 and 
4

Y
M

 , provides 

explicit estimates 
b

k , 
b

C  and 
G

  of the three parameters as  

 
2

1

Y

b

b b

M
C

k k



  (54) 

 
2

2

1 1
1

2

Y
b

G Y

b b

kM

M k k


 
    
 
 

  (55) 

      4

4
12 1 3 1 3 1

Y

b b G b G G b
M C k k k k             

 
 (56) 

Equations (54)-(56) allow to write a third order equation in 
b

k   

3 2
0

b b b
a k bk ck d     (57) 

where 

 

 

   

 

 

 

 

 

 

2 2

2 24 4

2 2 2 2

2 2 2 2

2 2

2 22 2

2 2

2 2
2 2

, 3 ,
12 4 12 4

2 3 , 1 .
4 4

Y YY Y

Y Y Y Y

Y YY Y

Y Y
Y Y

M MM M
a b

M M M M

M MM M
c d

M MM M

  

  

   

     

  (58) 

Note that only the solution 
b

k > 0 of (57) is acceptable. 

4. Application to field data 

We conclude this report with a pilot application of the derived models to field neutron 

porosity data. We let Y represent neutron porosity data from a deep vertical borehole in 

southwestern Iran recently analyzed by Dashtian et al. (2011), Guadagnini et al. (2015) and 

Riva et al. (2015). The well is drilled in the Maroon field within which gas drive is used to 

produce oil and natural gas. A large number (3,567) of neutron porosity data taken at a distance 

of about 15 cm apart are available, having sample mean 
1

Y
M = 14% and sample standard 

deviation 6.4%. Figure 7 plots excess kurtosis of porosity increments, Y , versus lag, which 

ranges from 15 cm to l/2 where l = 543 m is the total depth of the well segment along which 

data are available. Excess kurtosis 3
Y



  is significantly larger than zero at small lags, then 

decreases with increasing lags to oscillate around relatively small values (<< 1) at the largest 
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lags. Included in Figure 7 is a horizontal line denoting excess kurtosis, 3 0.64
Y

   , of mean-

removed porosities 'Y  = Y  
1

Y
M . Whereas at small lags 3

Y



  > 3

Y
  , implying that 

frequency distributions of Y  exhibit sharper peaks and heavier tails than does that of 'Y , the 

opposite happens at large lags. An analogous behavior is predicted by our theoretical models, 

as highlighted in Figure 1 for a log-normal subordinator with 1   and in Figure 5 for a gamma 

subordinator with k > 1. 

4.1 Log-normal subordinator 

By applying method a [using (44) and (45)] to this porosity dataset, we find 1.78
a

  , 

_
6.10

G a
  %. Sample distributions of porosity increments are symmetric with peaks and tails 

that decay with lag. This is illustrated by Figure 8, which displays the pdfs of Y  evaluated at 

two lags: 1.22 ms   and 7.31 ms  . Parameter estimates 
b

  and _G b
  obtained by method 

b, [using (46)-(48)] plotted respectively versus lag number (1 lag = 0.15 m) in Figures 9a and 

9b, oscillate for lags ranging from 1 to 1000 in an irregular fashion about mean values of 
b

 = 

1.75 and _G b
 = 6.15%. These mean values, characterized by small coefficients of variation 

(0.05 and 0.07, respectively), are very close to their counterparts obtained by method a. 

Estimates of 
G

  also obtained by method b are depicted versus lag in Figure 11. Figure 8 also 

highlights that the analytical pdf computed according to (23) with the set of parameters 

 _
, ,

b G b G
    is in good agreement with sample pdfs for both lags 1.22 ms   and 7.31 m.s   

4.2 Gamma subordinator 

By applying method a [using (52) and (53)] we obtained 19.1
a

k   and 0.33.
a

C   Figure 

10 depicts the way estimates of k and C depend on lag number (1 lag = 0.15 m) when they are 

inferred with method b [using (54)-(58)]. We note that method b does not yield estimates k or 

C which could be considered as constant. Parameter estimates b
k  and b

C  obtained by method 

b, vary significantly with lag, their mean values being 47.6
b

k   and 0.52
b

C  . The latter, 

deviate by values estimated by method a. We can also note that k is almost constant for lags 

ranging (approximately) between 10 and 80: within such range, mean value and coefficient of 

variation of 
b

k are respectively 6.69 and 0.37. 
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Figure 7. Excess kurtosis of mean-removed porosities data (continuous line) and of porosity 

increments (symbols) versus lag. 

 

 

Figure 8. Sample pdf of increments of neutron porosity data, Y , (red dots) at two lags: (a) s = 1.22 

m and (b) s = 7.31 m. Also shown are Gaussian pdfs with variance equal to that of the sample (dashed 

curves),  Y
f y


  (23) evaluated using b
 , 

b
 , G

  (solid red curve) and  Y
f y


  (36) evaluated 

using b
k , b

C , G
  (solid grey curve) 
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Figure 9. Estimates of the log-normal subordinator parameters (a)   and (b) 
G

  versus lag (1 lag = 

0.15 m) computed by (44)-(45) (dashed lines, method a) and (46)-(48) (symbols, method b). 

 

 

Figure 10. Estimates of the gamma subordinator parameters (a) k and (b) C versus lag (1 lag = 0.15 

m) computed by (52)-(53) (dashed lines, method a) and (54)-(58) (symbols, method b). 

 

Figure 8 reports the analytical pdf computed according to (36) with the set of parameters 

 , ,
b b G

k C   obtained from (54)-(58). For both lags 1.22 ms   and 7.31 ms  , (36) is in good 

agreement with the sample pdf and it is almost overlapped to (23), i.e. to the solution obtained 

with the log-normal subordinator. 

Finally, Figure 11 depicts estimates of 
G

  obtained using a log-normal and a gamma 

subordinator versus lag. It can be noticed that the shape of the correlation function of the 

Gaussian process is quite insensitive to the choice of subordinator we employ. This might imply 

that the signature of the correlation imprinted by the Gaussian process can be considered as a 

distinct feature of the system.  
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Figure 11. Estimates of 
G

  versus lag obtained using a log-normal and a gamma subordinator.  
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