

André Chanzy, Marius Heinen, Claire Jacobs and the Whole consortium INRA, UMR EMMAH, Avignon, France Wageningen Environmental Research (WENR), Wageningen, the Netherlands

<u>Opera</u>tionalizing the increase of water use efficiency and resilience in irrigation

- Challenge-I) Increasing the efficiency and resilience of water uses
 - Sub-topic-I.a. Efficiency issues include the development of:
 - i. Innovative water use systems and practices, including precision irrigation technologies (e.g. models, sensors, ICT);
 - (Sub-topic-I.b. Resilience to climatic variability)

Focus

- Challenge-I) Increasing the efficiency and resilience of water uses
 - Sub-topic-I.a. Efficiency issues include the development of:
 - i. Innovative water use systems and practices, including precision irrigation technologies (e.g. models, sensors, ICT);
 - (Sub-topic-I.b. Resilience to climatic variability)

Consortium

www.waterjpi.eu

)PERA

Funding : 920 k€ (Total 1236k€)

OPERA - Objectives

- 1) To identify specific market driven, farmer demands
- 2) To identify operational means to anticipate climate variability and critical moments of water scarcity.
- 3) To identify the most adequate combination of soil sensors, plantbased sensors, remote sensing, weather forecast and simulation models in irrigation scheduling.
- To identify ways for operationalizing the upscaling at the territory scale information allowing a better management of water scarcity and drought.
- 5) To integrate experience in operationalizing precision irrigation from various climatic zones in Europe and South Africa to identify the best applicable service models.

Work Packages

Stakeholders oriented

WPI - Identifying sector needs to increase resource use efficiency : **Needs**

lead: Evenor Tech, Spain

WP2 - Forecasting water availability and critical water demand **: Innovation** lead: INRA – EMMAH, France

WP4 - Conceptualization of practical service models for irrigation : **Transfer** lead: CREA, Italy

WP3 - Guidance for optimal irrigation water strategies (case studies) : demonstration

lead: ITP, Poland

Technical oriented

Demand from the farmers

Assessment from users : 251 surveys, 2 local workshops, 6 pilots.

Issues linked to irrigation

	FR	SA	ΙТ	SP	PL	NL
Cost (water price, Energy)			(x)	(x)	(x)	
Hydraulic infrastructure (water distribution, irrigation system, reservoirs)	x	x	x	x	x	
Regulation (water sharing between users, administration)	x	x	x	x	x	
Increase water use efficiency	(x)	(x)	x	x	x	x
Reduce labour cost	x		x			

limitations

Case	Water efficiency	Adopting alternative crops
Study		
Poland	 Economic: high investment costs (irrigation equipment, well drilling, water distribution), lack of available catalogue od the best technical and organizational solution Administrative: complexity and time to obtaining water intake permit 	 uncertainty of prediction market demands advice on suitable crops lack of specific information on water, fertilizer and cultivation requirements
France	 Economic: high cost of irrigation control system Technical Lack of trusts in the quality of the delivered information 	
Italy	Without preferences between the proposed factors, stakeholders given the same importance, fear of being more controlled Lack of trusts in the quality of the delivered information	 costs uncertainty of prediction market demands
South Africa	The stakeholders considered themselves highly efficient. However, they mentioned that improving field infrastructure and adapting their irrigation strategies are the best way to improve efficiency	Crops according to the market demands
Spain	 Economic: expensive products; investment costs Administrative: Lack of agility by the administration; Little promotion of advisory services by public administration Technical : fear in introducing new technologies 	 costs uncertainty of prediction market demands
Netherland	Economic: High prices of good systems	- Costs - uncertainty of prediction market demands
www.waterjpi.	eu	

Trust in innovation : the case of SA

Fruitlook – remote sensing

Sophisticated tool :

- Use satellite and weather information to monitor vineyards and orchards in terms of crop growth, crop water-use and leaf nitrogen content
- Uses eLEAF's Pixel Intelligence technology (PiMapping[®]) which combines meteorological, biophysical and satellite data.
- Data components are based on SEBAL
- Widely available : Open-access online platform, since January 2012 and covers approximately 200 000 hectares of crops
- → NOT USED, SOIL MOISTURE PROBES BEING PREFERED
 - → Why ?
 - → Increasing the trust by comparing results

Trust in innovation : the case of SA

Fruitlook – remote sensing

- Lack of trust
- Lack of understanding (interface, background)

Trust in innovation : the case of SA

	FL ET _{actual}	FL ET _{ideal}	ET₀	ETc	Soil factor	Applied
Sept	524712	544448	884534	536799	441015	1225900
Oct	857919	953181	1361423	1159652	968017	1414500
Nov	993845	1033797	1626675	1443171	1414745	1414500
Dec	1229122	1307843	1680480	1558812	1681583	1886000
Jan	1319411	1372615	1753187	1567457	1774085	1886000
Feb	1225361	1274235	1447586	1302827	1568672	188600
Mrc	963384	1012558	1234990	1111491	1083280	84870
April	673302	729831	1058097	737902	822029	84870
					10 10	Con Con
	Fruitloo	ok	Weather	station	Soil Moisture	-
Vate	PI					2

Context

PERA

Innovation

Issues

Cost (water price, Energy)

Hydraulic infrastructure (water distribution, irrigation system, reservoirs)

Regulation (water sharing between users, administration)

Increase water use efficiency

Decrease labor cost

Developed Methods

Method ID	Users	Mod el	RS*	Field Senso rs**	EF* **	Crops in OPERA and limitation
MI : Agroclimatic and remote	Farmers, public		Х			Olive (OPERA)
sensing based Indice (EVENOR)	administration					should be calibrated for other crops
M2 : Stomata conductance	Farmers, public	Х	Х	Х		Olive (OPERA)
modelling (CSIC)	administration					should be calibrated for other tree
						production
M3 : APSoMoCo based on crop	Farmers, water	Х		(X)	Х	Potatoes (OPERA)
modelling (WENR)	distributor					all crops being modelled by SWAP-
						WOFOST
M4 : : CROPIRR based on crop	Farmers, advisory	Х				Sugar beet, Parsley (OPERA)
modelling (ITP)	services					Can be applied to any crops
M5 : – IRRICROP based on Remote	Farmers, farmer's	Х	Х		Х	Tomato (OPERA)
sensing and a crop model	association, public					Limited to crop modelled by the
(university of Florence)	administration					Aquacrop model
M6 : Irrigation requirements at the	Irrigation association,	Х	Х		(X)	Orchard, Grass land, gardening,
territory level based on crop	public administration					Olive, Vineyard, field crop (OPERA)
model and remote sensing INRA						can be applied to any crop simulated by
						STICS or Aquacrop models

M6 Estimation of actual water need to manage water sharing during shortage period

Mapping crop practices and land use (Using Sentinel 2 data

JPERA

M6 evaluation

Farm	Nb of field	year	True positive	False positive	Rate of good determination
Boisvert	55	2016	6	0	100%
		2017	10	2	83%
Suffren	47	2016	5	0	100%
		2017	8	3	72%
Aqueduc	23	2016	3	0	100% 🕟
		2017	8	0	100%

M2 A novel plant-based method

How are we implementing it?

Combination of plant-based sensors and physiological process-based models

M2 : Stomatal conductance as a key information to evaluate plant status

Hernandez-Santana et al. 2018

M2 : Overall scheme

IMPLEMENTATION

- Test method and quantify the performances
 - Define a Benchmark (what is done before OPERA)
 - Define metrics to assess the method performances
 - Provide a reference data set showing the interest of the method (difficult to obtain since it requires to manipulate irrigation).
- Provide guide lines
 - For the design Irrigation Advisory services based on the tested technologies (Context, issues, methods)

M5 irricrop (tested in Southern Italy)

AQUACRO	P

1. AquaCrop model

2. IRRISAT, an irrigation advisory service based on Sentinel-2 imagery Benchmark

3. Assimilating the canopy cover (fc) estimated by Sentinel-2 imagery into AquaCrop

M5 irricrop (tested in Southern italy)

M5 :Evaluation

Cumulated irrigation water requirement (mm) estimated by:

- AquaCrop
- IRRISAT

Assimilation of fc retrieved by Sentinel-2 imagery into AquaCrop

Observed schedule

Dalla Marta et al. Agronomy 2019

6

M5 Irricrop evaluation

		Yield (t/ha)	Tr (mm)	E (mm)	ET (mm)	IWR (mm)	WP _{IWR} (kg/m ³)
	Observed	7.20				416	1.73
2017	IRRISAT				450	450	
	AquaCrop	7.23	345	192	537	461	1.57
	Assimilation	8.23	372	165	537	461	1.79
	Observed	7.35				402	1.82
2018	IRRISAT				349	298	
	AquaCrop	7.60	291	137	428	332	2.29
	Assimilation	7.34	273	139	412	317	2.31

Crop and water balance variables

(Tr: crop transpiration, E: soil evaporation, ET: evapotranspiration, IWR: irrigation water requirement, WP_{IWR}: irrigation water requirement productivity).

Conceptualization of practical service models in line with the farmers needs

The aim was propose, define, optimize and customize irrigations advisory services, provided by OPERA.

Two main approaches :

The choice experiment to determine the preferences of farmers regarding the main characteristics and attributes of IASs. Among these, price allows an estimation of the trade-offs between attributes in monetary terms, thanks to marginal "willingness to pay" (WTP)

SWOT analysis

Choice experiment

Attributes	Variants
Weather forecasts.	Weather forecasts with a time horizon of up to 5 days.
Contract. It indicates the adoption of IAS for a range of time and for each farm.	for entire crop cycle, one or three years
Crop Water Requirement . It indicates a range of forecasting.	range of forecasting for 1, 2 or 3 days
Crop monitoring. A satellite image (i.e. Vegetation response to environmental stresses) of your plots.	every per day, 10 ,15 days
Registration of irrigation. Indicates recording the dates and the volumetric water applied.	one time, two times or three per month
Price (/ha/y)	5 – 10 – 15 €

Choice experiment results

Strengths

- Water saving
- Cost reduction

Weakness

- They face a lack of funds
- Low levels of diffusion of the information at farm level

Threats

- Social aspect and education
- lack of funding, institutional mechanisms to link rural communities

Opportunities

- improving agricultural production
- increase the water management troughs the ICT

> ..

General Conclusions

- Integration : sharing methodology at both end of the process (needs and market analysis) => a broader vision of needs thanks to the different pilot area contexts.
- Integration in the way of describing the innovation and method to evaluate IAs.
- Timely to continue development using technological opportunities (Sentinel, ensemble forecast, crop models)
- FACCE /Water : Irrigation at the intersection of climate change (adaptation) and water management (water use efficiency, water resources)
- Management of the project satisfactory (2 steps, expected length of the document, link with national agencies). Improvements (format of the report known at the submission level).

General Conclusions

For the future

Farmers trust in IAs remains the key issue : Need of dedicated experiment where advices are really tested in the field

- need to focus effort on an experimental set up to analyse impacts on both water saving and the vegetation production and evaluate models in their ability to represent water/production interactions accurately
- appropriate infrastructure, long term perspective projects

Thank you

Acknowledgement

"The authors would like to thank the EU and The Ministry of Economic Affairs (The Netherlands), CDTI (Spain), MINECO (Spain), ANR (France), MIUR (Italy), NCBR (Poland) and WRC (South Africa) for funding, in the frame of the collaborative international consortium OPERA financed under the ERA-NET Cofund WaterWorks2015 Call. This ERA-NET is an integral part of the 2016 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI)."

Funding

Total budget:

€ 1,236,613

920,481

Requested funding:
 Own contribution:

€ 316, 132 (Evenor, UniFl, CREA, INRA)

Partner Funding Funding Budget Organisation I – Wageningen Environmental Research (Alterra) 149200 EZ (NL) 149200 2 – Stellenbosch University (SU) WRC (SA) 50000 50000 3 – Evenor Tech CDTI (ES) 194844 116906 4 – Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS – MINECO (ES) 130188 130188 CSIC) 5 – French National Institute for Agricultural Research (INRA – EMMAH) 98142 ANR (FR) 259657 6 – University of Florence (UNIFI – DISPAA) MIUR (IT) 114599 80220 98700 7 – Council for Agricultural Research and Analysis of Agricultural MIUR (IT) 141000 **Economics** (CREA) 197125 8 – Institute of Technology and Life Sciences (ITP) NCBR (PL) 197125

€

Choice experiment results

Attribute	Coef (µ)	std.err	t-stat	p-value
Price (euro / ha)	-0.089	0.022	-4.04	0
Time length of forecasts (per day)	0.360	0.054	6.72	0
Duration of the contract (per year)	-0.247	0.086	-2.86	0.004
Crop water requirement (per day)	-0.055	0.231	-0.24	0.813
Frequency of satellite monitoring availability (per day)	-0.034	0.013	-2.59	0.01
	0.001	0.010	2.00	0.01
Registration (per month)	-0.314	0.128	-2.44	0.015
No choice	-0.541	0.411	-1.32	0.188
vw.wateripi.eu				Α

SWOT External parameters

Threats

- Social aspect and education
- lack of funding, institutional mechanisms to link rural communities

Opportunities

- improving agricultural production
- increase the water management troughs the ICT
- new markets and consumers
- reducing the environmental pollution.

SWOT Internal parameters

Strengths

- Water saving
- Cost reduction
- …Capacity and competence
- Good network of land reclamation and irrigation consortia
- Innovation development
- Provide water measurements

Weakness

- They face a lack of funds
- Low levels of diffusion of the information at farm level
- Negative perception of information provides by IASs
- Low use of electronic devices among farmers of sharing knowledge provide from IASs.

M3 : APSoMoCo modelling soil moisture with ensemble forecast

Simulation model (SWAP-WOFOST)

- history: true weather
- future 15 d: ensemble (51) weather forecast

Prediction + uncertainty of water content in root zone

Automation

- download ECMWF data, download historic KNMI weather data, download sensor data
- run SWAP-WOFOST for all scenarios
- Produce graphs (and send these by E-mail)

SWAP-WOFOST implementation evaluation

) PERA

M3 Hindcast Analysis

6

M4 CropIrr : advisory given at the regional level

Upscaling from field scale to region scale based on soil-agricultural maps, modeling and GIS techniques.

Elaboration of maps: T. Bolewski, E. Kanecka-Geszke (ITP KOB) based on the maps of the Institute of Soil Science and Plant Cultivation (IUNG)

Conclusions

- Our results show that farmers are actually willing to pay to introduce an irrigation support system that results in an economic advantage over their current situation.
- It has been shown that farmers' willingness to pay varies according to the attributes that characterize the service offered based on the country of origin.
- Implicit prices estimates enabled us to measure the non-market benefits that would arise from an improvement in the water use efficiency and productivity.