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Summary 
 

One of the challenges encountered in irrigated fields and irrigated territories (irrigated sector, catchment 
area) is to improve the efficiency of water use in irrigation to cope with growing needs and a declining or 
more variable water resource. In OPERA we aimed at developing improved approaches based on different 
levels of innovation such as using simulation models to better assess soil water content, remote sensing 
to characterize the vegetation status and take profit of the new capabilities of the recent satellite missions 
and, ensemble weather forecast to account for uncertainties of meteorological forecast. Six methods are 
developed in OPERA: 

1- Agroclimatic and remote sensing-based Indices developed by EVENOR Spain and implemented 
Olive trees. The aim is to improve their characterisation and propose combinations of indices to 
improve irrigation recommendations.  

2- Plant-based irrigation method developed by IRNAS-CSIC Spain implemented on Olive trees. The 
irrigation needs are assessed using stomata conductance modelling and thus better considers the 
plant control of the transpiration. 

3- The APSoMoCo method based on soil-crop modelling developed by WENR – the Netherlands 
implemented on field crop (potatoes). It is based on the use of a soil-crop model and ensemble 
weather forecast to provide soil moisture forecast and associated uncertainties. 

4- The CROPIRR method based on soil-crop modelling developed by ITP — Poland implemented on 
field crop (leaf parsley, celery and sugar beet). It is based on the use of a soil water balance model 
and meteorological forecast to provide soil moisture. The method aims on estimation of short term 
forecast of irrigation water needs.  

5- The IRRICROP method based on remote sensing and the crop model developed by UNIFI and CREA 
on field crop (tomato, corn). The method intends to improve the IRRISAT tool, already operated 
for commercial application, by adding an assessment of the soil moisture using the Aquacrop Model 
and meteorological forecast to address uncertainties on the forecasts. 

6- Irrigation requirements at the territory level method based on crop model and remote sensing 
developed by INRA on a large variety of irrigated crops (grass, orchard, gardening, field crop, 
vineyard, olive trees). The method aims at mapping actual irrigation water needs at the level of 
an irrigated sector. 

 
These methods are mostly designed for farmers, but they can be up-scaled and thus can be made of 
interest to a wider range of users as administration and water association. 

The objective of this deliverable is to present the main innovation underlying the tools that were 
implemented to improve the irrigation efficiency and tested in pilot sites as reported in D3.3. In this 
deliverable we remind the objective and the rationale of every method, which were presented more 
extensively in D2.1. In this report, we give details on the development required to implement the methods 
and provide an assessment of the results that will be further used to improve irrigation decision and 
manage water shortage. Therefore, the analysis of the full implementation of the method to manage 
irrigation, as well as their test on pilots were made in WP3 and reported in D3.3. 
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1 Introduction 
 

One of the challenges is to improve the efficiency of water use in irrigation to cope with growing needs for 
water and a declining or more variable water resource. Such a situation is accentuated in the context of 
global changes with stronger demographic pressure and climate change. Improving irrigation can be done 
either by working on the water application techniques or by optimizing its use and reducing losses. In 
OPERA it is essentially on this second axis of improvement that we have focused. 

Methods for scheduling irrigation have been the subject of much research and innovation in the past. 
Beyond the farmer's expertise, we can consider that the current standard is to control irrigation based on 
an estimate of the climatic demand (ET0) and the development of the vegetation cover. Many service 
companies have invested in this field. Some estimation methods rely on sensors that characterize the 
water status of the soil (tensiometer, watermark probe, capacitive probes, TDR) or vegetation (diameter 
of fruits). Despite the fact that the ideas of using such sensors are old, their implementations in an 
agricultural context, the analysis of the signals and the formalization of the decisions remain a difficulty 
not always mastered, which would explain the absence of generalization of their use. 

In OPERA, we aimed at developing improved approaches based on the following levels of innovation: 

• Integration of different sources of information and models. Methods will integrate different sources 
of information and models (T2.2). 

• Coupling RS (remote sensing) data and models. Use of high-resolution satellite images (Sentinel 
and Landsat 8) with a crop or soil-crop model (data assimilation, model input, model calibration) 
to provide spatial soil water content, plant requirements and assess the quality of irrigation 
implementation (T2.3). 

• Use of in situ sensors to monitor vegetation status and development of upscaling strategies to 
account for heterogeneities at the field and the farm-scale using models and remote sensing 
(T2.4). 

• Implementation of ensemble weather forecast in crop or soil-crop models and uncertainty 
assessments (T2.5). 

The definition of irrigation scheduling methods is very dependent on the context of the application, which 
takes the cropping systems into account, the organization of the sectors and the management of the water 
resources and the tensions on the uses of water. In OPERA, the methods that have been developed are 
based on concrete cases at the pilot sites (see WP3) and the skills of the teams in charge of the 
developments. Note that the methods developed are not intended solely for irrigation management by the 
farmers at the plot / field scale, but also targets other levels of decision-making, such as water resources 
administrations and managers.  

Six methods have been developed or applied in OPERA: 

1- M1 Agroclimatic and remote sensing-based Indices developed by EVENOR (Spain) and 
implemented olive trees. The aim is to improve their characterisation to improve irrigation 
recommendations.  

2- M2 Plant-based irrigation method developed by IRNAS-CSIC (Spain) implemented on olive trees. 
The irrigation needs are assessed using stomata conductance modelling, which takes the plant 
control of the transpiration into account. 

3- M3 The APSoMoCo method based on soil-crop modelling developed by WENR (the Netherlands) 
implemented on a field crop (potatoes). It is based on the use of a soil-crop model and ensemble 
weather forecast to provide soil moisture forecast and associated uncertainties. 

4- M4 The CROPIRR method based on crop modelling developed by ITP (Poland) as implemented on 
field crops. It is based on the use of a soil-crop model and meteorological forecast to provide soil 
moisture. 

5- M5 The IRRICROP method based on remote sensing and the crop model developed by UNIFI (Italy) 
on field crop (tomato, corn). The method intended to improve the IRRISAT tool, already operated 
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for commercial application, by adding an assessment of the soil moisture using the Aquacrop 
model. 

6- M6. Irrigation requirements at the territory level method based on crop model and remote sensing 
developed by INRA (France) on a large variety of irrigated crops (grass, orchard, gardening, field 
crop, vineyard, olive trees). The method aims at mapping actual irrigation water needs at the level 
of an irrigated sector. 

Table 1. Methods characteristics 

Method ID Users Model RS* Field 
Sensors

** 

MF*** Crops in OPERA and limitation 

M1 Farmers, public 
administration 

 X   Olive  
should be calibrated for other 

crops 

M2 Farmers, public 
administration 

X X X  Olive  
should be calibrated for other 

tree production 

M3 Farmers, water 
distributor 

X  (x) X Potatoes  
all crops being modelled by 

SWAP-WOFOST 

M4 Farmers, advisory 
services 

X  X X Sugar beet, Parsley, Celery  
Can be applied to any crops 

M5 Farmers, farmer’s 
association, public 

administration 

X X  X Tomato and Corn  
Limited to crop modelled by 

the Aquacrop model 

M6 Irrigation 
association, public 

administration 

X X   Orchard, Grass land, 
gardening, Olive, Vineyard, 

field crop  
can be applied to any crop 

simulated by STICS or 
Aquacrop models 

* Remote sensing 
** Field sensors to assess soil and/or crop water stress status involved in the method implementation 
*** Meteorological Forecasts (in green the method used ensemble forecast) 

The goal of this deliverable is to report on the developments made on the six methods and evaluate their 
potential of improvement. The report associated with activities made in WP2 is centred on OPERA 
innovations. We recall their rationale and their expected field of application already presented in D.2.1 and 
we present the development leading to implementable processes and make and assessment of the 
expected performance. The work made in WP2 is complementary to that made in WP3, where pilots based 
on the innovation were tested in real conditions to demonstrate the benefit of the developed innovations 
in improving irrigation efficiencies (see D3.3).  
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2 Innovation developments 
 

2.1 Agroclimatic indicators developed by Evenor (Spain) 
 

2.1.1 Rationale and aims 
The developed method aims at providing irrigation requirement at the field scale to provide an objective 
assessment of the actual water need for olive orchards. The method is based on the estimation of water 
requirement at plot level using meteorological station and satellite image through agroclimatic indices. 

The NDVI-Csw method is another method addressed in this study. It is useful for managing the water 
resources of Mediterranean olive groves. The NDVI is used characterize the canopy development and thus 
infer the crop coefficient while CSW is a short-term water stress factor (Maselli et al. 2009, 2013) able to 
represent the ET under stressed conditions. The two-layer nature of the olive groves requires a separate 
estimate of NDVI for trees and for the underlying grass cover, which can be obtained by applying 
appropriate statistical operations to satellite images with different space-time properties. The crop 
coefficients (Kc) can be obtained from data obtained by remote sensing and combined with daily potential 
evapotranspiration estimates for the operational prediction of real evapotranspiration (ETA). 

The inputs data required are summarized in the following table: 

Table 2. Input data of the NDVI-CSW method 

Input Type Variable identification and 
metric 

Temporal and 
spatial scale 

Data source 

Climate Precipitation (mm), 
Air temperature min and 
max (°C), 
Wind speed (m/s), 
Vapour pressure (mbar),  
Solar radiation (MJ/m²) 
PET Potential 
evapotranspiration (mm) 
 

Hour and Daily 
– spatial unit 

Regional Agricultural Government 
and National Environmental 
Government  

Soil % Clay 
% Sand 
Field capacity (mm) 
Dry Bulk density 
Permanent wilting point 
 

Spatial unit Soil map of Andalusia 1:400.000 
and soil samples  

Vegetation NDVI, NDWI 
 

Spatial unit Sentinel 2A and 2B 
 

Agricultural 
practices 

Crop type and variety 
Irrigation (rules or 
calendar) 
 

l/h Local expertise 

 

Innovations in OPERA were focused on Climate change impact analysis on olive crops using agroclimatic 
indices and the use of Sentinel 2 to upgrade the spatio-temporal resolution in NDVI in order to implement 
the NDVI-CW method. 

2.1.2 Development and results 
 

All Developments were supported by 8 test sites for a total of 28 plots (each site having at least 3 plots) 
located in Andalusia. These sites are described in detail in D3.3.  
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The NDVI-Csw method implementation was done according to the diagram given in Figure 1. The workflow 
can be summarized as follow. AW, which refers to the water available in l/m2, which corresponds to the 
ratio between the sum of the water supply (precipitation, irrigation) and the daily reference 
Evapotranspiration (ET0) of the last 20 days. 

Secondly (2) CWS was calculated, which refers to the Water Stress Quotient. Subsequently (3) the fraction 
of vegetation cover (FVC) was derived from the NDVI values that were obtained in QGis and applying the 
NDVImax and NDVImin values referring to the study plot 

Subsequently (4), Actual transpiration (TRa), the current transpiration in l/m², was calculated, where the 
values of ET0 were substituted by the value of the study day in l/m2; KcVeg, the crop coefficient 
(determined by the ratio between evapotranspiration of the cultivated olive trees versus some of the 
reference ones, fixed at 0.7 (Battista et al. 2016); together with the FVC and CWS values that were 
obtained previously. 

The calculation of the actual soil evaporation EVa (5), which refers to the current evapotranspiration in 
l/m2, was done. For this, the values previously obtained for AW, ET0 and FVC were used, and the KcSoil 
for bare soil was fixed to 0.2 (battista et al. 2016). 

Next, ETA, t (6), the current evapotranspiration in l / m2 was calculated, adding the values obtained from 
EVa and TRa. The calculations were continued by determining the parameter Wt (7), which refers to the 
total water in the system, adding Pt and IRt, which refer to precipitation and irrigation respectively, both 
in l/m2. 

Finally, the study variable Vt will be calculated from the previous date (Vt-1), which refers to the volumetric 
content of water in the soil in l / m2, with all the parameters calculated, the parameters DPt (drainage), 
ETA, t and Wt were replaced. Vt initialized to the field capacity in l / m2 as obtained after heavy rainfall. 

 

 

Figure 1. Conceptual implementation of the NDVI-CWS method 

In our study the aim was to test the interest of the high space-time resolution offered by Sentinel and thus 
having a better monitoring of the vegetation cover (FVC) (Figure 2 and 3) The figures have shown a clear 
improvement in characterizing temporal patterns in NDVI. 
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Figure 2. NDVI values from Sentinel 2 (29-Sept-2017 to 29-Sept-2018) 

 

 

Figure 3. NDVI values from Landsat 8 (29-Sept-2017 to 29-Sept-2018) 

 

NDVI relevance was assessed on Olive tree fields over different sites in Spain. Results have shown good 
correlation between NDVI and actual evapotranspiration as shown in Table 3 

Table 3. Correlation between actual ET and NDVI on different sites in Spain 

Study site Correlation coefficient 
Campaniche 0.54 
El Águila 0.72 
El cañuelo 0.67 
El Rancho 0.69 
La Baldía 0.86 
Mirágenil 0.42 
Quijano 0.43 

2.2 Plant-based irrigation method developed by IRNAS-CSIC (Spain) 

2.2.1 Rationale and aims 
The goal of the method to be implemented in OPERA is to provide a calculation of tree water use for 
applying precision irrigation in crops to optimize water management based on physiological knowledge. 
Irrigation is applied by drippers and we will use a regulated deficit irrigation strategy. The method is based 
on the estimation of stomatal conductance which is in the crossroad of CO2 and H2O fluxes. It allows us to 
estimate the accumulated photosynthesis in each individual tree which has been proven to be closely 
related to fruit growth and oil synthesis. A microclimatic weather forecast for our site is provided and used 
for programming irrigation 3 days in advance. Remote sensing data will help us to understand the spatial 
heterogeneity and the temporal heterogeneity of some key parameters like LAI and photosynthetic 
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capacity. The final outcome is a protocol of irrigation for farmers and managers at the farm level and a 
tool which can be used by both farmers and public administration in relation to the regional water 
management. 

The method is summarized in Figure 4, where the two main outputs are the net photosynthesis rate and 
the transpiration making the link between production and water needs possible.  

 

Figure 4. Scheme of how transpiration is estimated representing the water needs required by the plants. 
Symbols represent Ys= soil water potential; gs= stomatal conductance; AN= net photosynthesis. 

For implementing the method, the following information is necessary: 

The input data required to use the models and apply the methodology are: 

• Leaf area 
• The model of stomatal conductance requires: soil water potential, air temperature, and humidity 
and photosynthetically active radiation PAR. Environmental variables should come ideally from weather 
forecasts. We use a micro-weather forecast provided by a specialized company. In the case of 
estimation of full water requirements of the plant, soil water potential (ψs) can be assumed to 0 Mpa. 
The check-point for gs refers to the use of a plant sensor which can be used to check that we are 
achieving the desired level of stress. 

The leaf area and stomatal conductance are the two main unknowns of the Penman-Monteith equation that 
describes the plant transpiration. In the OPERA project, the IRNAS-CSIC team has focused on these two 
variables. Remote sensing with drones at the whole orchard level has been used to estimate the tree crown 
volumes and from that the leaf area. On the other hand, plant-based sensors were used to estimate 
stomatal conductance in a continuous and automatic way using a very novel approach.  

2.2.2 Development and results 
 

Photosynthesis is a good proxy to assess olive fruit production 

The rationale of the developed approach is based on the analogy between the relationship of yield versus 
transpiration or water use and the relationship of photosynthesis versus stomatal conductance. Figure 5 
represents this analogy with actual data from an olive orchard, which has been studied by CSIC research 
team for 9 years. 
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Figure 5. Left panel: the relationship between the yield of olive fruits and irrigation applied. In our 
environment, during the growing season there is no rain and all water applied is lost by the plantation by 
evapotranspiration. Right panel: the relationship between photosynthesis and stomatal conductance for 
the trees in the same orchard. 

This principle was investigated in the case of olive trees under different irrigation strategies. It has been 
demonstrated (Hernández-Santana et al., 2018) that photosynthesis is the main determinant for fruit 
growth as shown in Figure 6 where the relationships between An and fruit growth was investigated in full 
watered orchard (100c treatments) and orchard conducted by deficit irrigation (45RDI treatments) 

 

Figure 6. Two variables related to reproductive growth have been correlated to accumulated 
photosynthesis (AN). The green and blue points correspond to a full covered of irrigation need (100c 
treatments) and the red and orange points correspond to deficit irrigation strategy (45RDI treatments) 

Figure 6 shows clearly how it is not necessary to accumulate more than 47 molCO2 m-2 to get the maximum 
olive oil content in fruits. This is an example of how we can use the new approach based on stomatal 
conductance to set thresholds for irrigation. The most innovative aspect of the method is that this threshold 
is physiologically based, i.e. stomatal conductance, and can be interpreted unambiguously. 
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Stomatal conductance modelling to infer transpiration and photosynthesis rate. 

As shown in Figure 4 the determination of gs is central in the approach. A novel aspect of the developed 
method is the use of a mechanistic model of stomatal conductance (BMF model, Buckley et al, 2003). This 
model has the advantage that its parameters have full physiological meaning. A simplified version was 
obtained some years ago by our research group and it has been applied with success several times and 
with several species for agronomical interest (Diaz-Espejo et al., 2012; Rodriguez-Dominguez et al., 2016).  

This equation represents the response of stomatal to environmental conditions according to the 
hydromechanical model of Buckley et al. (2003). Input variables are regular meteorological variables:  air 
vapour pressure deficit (VPD, Pa), photosynthetic photon flux density (PPFD, µmolm-2s-1), CO2 
concentration (CO2, set to 400 ppm) and air temperature (ºC). Also soil water potential (Ψs, MPa) is 
included and it can be estimated from soil water content and soil hydraulic properties, or in the case of full 
irrigation, it can be used the predawn water potential as a surrogate of soil water potential. The parameters 
obtained have full physiological meaning, which is a strong aspect of the use of this model, and represent: 
plant hydraulic resistance (R, MPa mmol-1 m2 s) from soil to leaf, the sensitivity of guard cells to turgor 
(χβτ, mol m-2 s-1 MPa-1) where the role of ABA is included and finally, the osmotic pressure (π, MPa). 

The model was applied assuming a soil without any water deficit (Ψs=0). Results of the developed method 
were evaluated against the widely used method based on the crop coefficient considered here as a 
benchmark. Figure 7 shows the comparison of both methodologies in a hedgerow olive orchard intensively 
studied for the last 9 years, in which the crop coefficient method is finely tuned. One can. see how the 
differences between both methods are minimal, and even our method allowed for the saving of 18% of the 
water. 

 

Figure 7. Comparison of the stomatal conductance method with the crop coefficient method (benchmark) 
for a hedgerow olive orchard. 

Leaf area estimation 

We developed a method based on drone information from multispectral, hyperspectral and infrared 
cameras allowed to discriminate perfectly each treatment an even individual trees (each pixel is 8 cm). 
The most valuable results were: in the case of the multispectral cameras we were able to separate the 
effect of the NDVI values from soil and weeds from the canopy. Reconstruct the canopies in 3-D using a 
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visible 4K camera was a very promising result. We have been able to use this information to estimate the 
heterogeneity of plant sizes in the experimental site (Figure 8). 

 

 

Figure 8. Estimation of plant sizes (represented by plant volume) in the experimental farm. Each colour 
represents a water treatment and each bar the average of eight trees. 

Further use of tree sensors 

Here the implementation of the stomatal conductance was made under the assumption that the soil was 
well watered. The determination of Ψs in soils with water deficit is a key issue to fully take the benefit of 
the proposed approach. The use of tree sensors can be a way to estimate soil water potential status. But 
this requires further investigations to better handle the relationship between the dynamic delivered by 
trees sensors (as fruit or stem diameter) and the soil water content. 

 

2.3 APSoMoCo method based on crop modelling developed by WENR (The 
Netherlands 

2.3.1 Rationale and aims 
 

Accurate prediction of the amount of water in the root zone for the coming several days as a result of 
weather predictions can provide insight to farmers and water distributors if irrigation is needed the coming 
days. This is typically of interest to farmers that do not have to irrigate on a regular basis and who have 
to make decisions on when and where (which field) to use a moving irrigation system. In the current 
method the soil moisture content is predicted by using a soil water balance simulation model including a 
crop model. Major inputs for this model are the weather input variables which determine the input (rainfall) 
and output (evapotranspiration). Currently weather forecasts for several days ahead are available, but 
these are by definition uncertain. By using ensemble weather forecast (multiple realizations of weather 
forecasts) will result in multiple estimates of the pattern of simulated soil moisture content for the coming 
days. Based on the average together with the uncertainty band width of such a predicted soil moisture 
depletion can help the farmer to plan his decisions on irrigation.  

A common practice is to consider the current status of the soil (feel by hand, depth of groundwater level, 
expert knowledge, or in some cases actual measured soil water content) to determine if and how much 
irrigation is needed. In some cases, farmers may use the average weather forecast provided by the news. 
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The innovation of the new method is that the actual status of the water available in the root zone is 
monitored (by a simulation model) and that ensemble weather forecast are used to predict how this amount 
of water changes in the coming 1 to 15 days. By using the individual forecast that makes up the ensemble 
(51 in total) it is also possible to show the range of predictions or uncertainty. In OPERA the development 
work consisted of implementing in farm context the whole modelling chain with ensemble meteorological 
forecast, assess the accuracy of the simulation and the range results generated by the variability of the 
ensemble forecast. 

2.3.2 Development and results 
 

Modelling framework 

The total water content in the root zone was modelled by a one-dimensional model (SWAP-WOFOST; Kroes 
et al., 2017, Boogaard et al., 2011; http://swap.wur.nl/). Each day i) the climate inputs (rainfall, air 
temperature, air humidity, radiation, wind speed) as used in the model were updated by using the climatic 
data for the previous day of a nearby weather station (for instance in the network of the Royal Dutch 
Meteorological Institute (KNMI); http://www.knmi.nl/home), and ii) ensemble weather forecasts (for 
instance the 51 ensemble weather forecasts from ECMWF1) were obtained for the grid cell in which the site 
is located. The model simulations resulted in a predicted time course of the total water content in the root 
zone for the coming 15 days, which were visualized as the median of the 51 predictions surrounded by a 
grey area representing the e.g. 20-80% uncertainty range (see examples provided later). This approach 
was automated, and each day graphical output was sent by E-mail. 

In the Netherlands, there is land-covered information on soil types (soil profiles), soil physical properties, 
and groundwater levels (all at scale: 1:50 000). For all possible combinations of these aspects model input 
files have been generated in the scope of the Watervision Agriculture (“Waterwijzer Landbouw”) project2. 
For the test location (see below) the best corresponding data files were selected. It was decided to make 
use of locally determined soil profiles and groundwater levels and the subsequently derived soil physical 
soil layers in order to mimic better the local situation. An example of the application of the method can be 
found in deliverable D3.3. 

Model evaluation 

The model was tested on a potato field of a commercial farmer in the south of the Netherlands. To 
implement the model the farmer’s agricultural practices (basically crop type and growing season) and 
general soil physical properties (from the Dutch national soil physics database; not locally measured). 
Figure 9 shows the correspondence between measured and simulated water contents. Since on the one 
hand the sensors were not calibrated for the local soil (the manufacture calibration line was used) and on 
the other hand the model used general soil physical properties, one cannot expect exact correspondence. 
One could choose for future applications to calibrate the soil physical properties op the top soil layer such 
that measured and simulated water contents match as good as possible. However, the current application 
still is satisfactory. For example, the changes (increases) in water content due to the seven irrigation 
events resulted in similar estimates of the volume of water applied (Figure 9). One can note that a 
calibration can be done such that the absolute water contents match, or such that the change in water 
content for a certain period of time matches. For the latter case the absolute values may be different, but 
the increases and decreases in water content are still similar. 

 

                                                 
1 The ECMWF weather forecasts are obtained via KNMI based on a paid-for license for the duration of the OPERA project (Sept 
2017-Sept 2019). The data can only be used for research purposes without commercial intention. 

2 http://waterwijzer.stowa.nl/ 

http://swap.wur.nl/
http://www.knmi.nl/home
http://waterwijzer.stowa.nl/


 13 

 
 
Figure 9. Simulated (lines) and measured (symbols, averaged for the replicates; right y-axis) time 
courses of volumetric water content at depths 10 cm (top) and 30 cm (bottom). 

 

Impact of the weather forecast 

The impact of the weather forecasts is displayed in Figure 10 which shows the variability of the simulated 
soil water content in the top 0-30 cm for a lead 1, 7 and 15 days ahead and comparison of the median 
forecast with that obtained using the actual climate (hindcasting analysis). In the beginning of the growing 
season (May-June) the predictions were somewhat uncertain due to high variability in ensemble rain 
forecasts, and during the dry summer of 2018 the predicted water contents in the root zone were well in 
accordance with actual water contents, where main variations are mainly driven by irrigation events that 
were prescribed at the actual dates. The quality of the prediction is therefore much better during the dry 
period, when decision on irrigation has to be taken. This is a very promising result for the implementation 
of the method in an operational context. 
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Figure 10. Predicted water contents in the 0-30 cm layer for lead times 1 day ahead (top), 7 days 
ahead (middle) and 15 days ahead (bottom) (blue lines with grey confidence interval) compared to the 
true or actual situation (red line) simulated using actual weather data. 

 
It has been shown that the method works well and can be easily automated. The method provides the 
farmer with information on predicted behaviour of the water content in the root zone for the coming 1 to 
15 days to be used by farmers in scheduling irrigation. The uncertainty increases with lead time, and it is 
estimated that workable lead times could be up to say 1 week. 

Conclusions 

Applicability. It has been shown that the method works well and can be easily automated. It depends on 
the model input data. For Dutch conditions soil and groundwater level related information is available at 
the complete National scale; however, it is advised to determine local field data regarding soil profile and 
corresponding soil physical building blocks and groundwater level characteristics, which is relatively easy 
to do. The method provides the farmer with information on predicted behaviour of the water content in the 
root zone for the coming 1 to 15 days. He or she can use this information in scheduling irrigation. Currently 
the system does not give an advice on when and how much to irrigate. This could be simply added; 
however, it was not decided to do so in the beginning to avoid overwhelming farmers with a system that 
tells them what to do. The primary idea is that farmers should first adopt the idea of using forecast 
information. 

Robustness. The automated system is rather robust. Of course, the system is depended on data made 
available by others. In a very few occasions these data were either unavailable or some data were lacking, 
which resulted in no output. This required some manual intervention after which the system worked fine 
again.  

Strength and weakness. The strength of the system is that it provides an estimate of the total water 
content in the root zone for the coming up to 15 days, including an estimate about the uncertainty. The 
current weakness is that it has yet not been tested thoroughly for other soil-crop combinations, no 
experience is available how the system performs for locations (countries) where much less detailed 
information on soil profiles, soil physical properties and/or groundwater level information is available. 
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Another weakness is that it makes use of ECMWF data that need to be paid for, especially when the aim is 
to operationalize/commercialize the product. The discrepancy between model predictions of soil water 
content and actual measured water contents can be seen as another weakness; however, the system could 
gain robustness in case the measured water contents are used to calibrate (say on a weekly basis) some 
model parameters so that the predicted and measured water contents are and remain consistent. Because 
of time and budget limitations this automatic calibration was not performed in the OPERA project. 

2.4 The CROPIRR method developed by ITP (Poland) 

2.4.1 Rationale and aims 
The method is intended to aid the operation of irrigation systems using real time information on 
meteorological conditions and forecast. The CROPIRR model, coupled with the data collection, transmission 
and processing techniques, is used to predict on real time crop water demand and schedule irrigation. The 
CROPIRR method is based on soil-crop water balance modelling. It is developed by ITP on the basis of the 
FAO guidelines to estimate crop water requirements (Allen et al., 1998) and implemented on field crops. 
The method aims at providing a useful and accurate forecast of the soil water balance components at short 
term for operational planning irrigation. It could prevent water shortage as well as water excess and ensure 
more effective water use. The method will be used at both field regional (county) scales by modelling 
irrigation water demand and scheduling irrigation for different types of soils and crops on the basis of soil 
maps. 

Innovation relies on modelling of the crop-soil-atmosphere continuum coupled with measured actual 
weather conditions, short-term weather forecast to make predictions of soil water content up to 5 days 
ahead. It will enable the best fitting of irrigation water supply to the actual crop water demand in a more 
flexible way.  

2.4.2 Development and results 
 

Model development 

The CROPIRR model, coupled with the data collection, transmission and processing techniques, is used to 
predict real time crop water demand and schedule irrigation. The developed system (Figure 11) consists 
of: 

− a telemetric system including automatic meteorological measurements of precipitation, air 
temperature and humidity, wind velocity and solar radiation (for model simulation) with data 
collection and transmission by GPRS; 

− a system of short-term (for each day of the 5-day period ahead) meteorological forecast including 
daily precipitation, air temperature and humidity, wind velocity and solar radiation for 
evapotranspiration estimation, predicting crop water deficit and required water application in 
irrigation; 

− a model representing water transfer in a soil-plant-atmosphere system crop evapotranspiration, 
crop water demand, soil water balance and irrigation water requirement calculation; 

− information tools to disseminate recommendations to farmers supporting their decision on 
irrigation performance: the method is foreseen to be used directly by farmers after training or by 
regional agricultural advisory service (Regional Advisory Centre, water user associations, 
producers groups), disseminating recommendations by local media, internet, sms. 
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Figure 11. The scheme of the System for operational planning of irrigation demand in Poland. 

The FAO approach based on a simple soil water balance model CROPWAT is used (Smith, 1992a, 1992b; 
Allen et al. 1998). The standard modelling approach is based on the FAO guidelines to estimate crop water 
requirement. The model simulates soil water content changes using the water balance equation. The 
methods and equations used are presented by Łabędzki and Kanecka-Geszke (2009), Ostrowski, Łabędzki 
and Kanecka-Geszke (2015) and Łabędzki and Ostrowski (2018). Actual crop evapotranspiration and crop 
water demand are assessed using the Penman-Monteith reference evapotranspiration and crop coefficients 
Kc. Kc coefficients for highly yielding crops are determined in lysimeter investigations carried out in Poland 
as well as from literature (Allen et al. 1998). They are tabulated for crop development stages and for 10-
day periods of a growing season for a given plant. When soil water reserves are below readily available 
soil water, soil-water stress coefficient is used to reduce evapotranspiration, according to the method 
shown by Allen et al. (1998). The model also predicts potential crop yield reduction due to the lack of 
irrigation or insufficient irrigation using yield response factor Ky (Doorenbos and Pruitt 1997; Allen et al. 
1998). 

In the CROPIRR model, evapotranspiration and soil water content changes in the preceding period are 
calculated using measured values of meteorological variables as well as soil and plant parameters. For the 
five forthcoming days, crop water demand, soil water content changes and required water application are 
predicted daily. Therefore, irrigation doses are proposed according to the crop, and the soil assuming that 
the potential of soil water has to stay within a range of –10 kPa and –100 kPa. Irrigation scheduling is 
generated daily (recommended not less frequently than every 5 days) for the forthcoming 5 days.  

The calculations are performed in Excel Worksheets. The user can run the model every day for precise 
irrigation at farm scale or every five days for regional scale. 

To implement the described method, the following information is necessary: 

• Meteorological data: measured and forecast daily values of solar radiation, air temperature and 
humidity, wind speed and rainfall. 
• Soil profile description: number and depths of horizons, soil water content at WP and FC or 
available soil water content (measured in the field, derived from texture using PTF, derived from soil 
map, derived from pF curve).  
• Crop data: area of irrigated units (fields); standard rooting depth on the base of observations and 
literature; crop coefficient Kc, for highly yielding crops, determined in lysimeter investigations carried 
out in Poland or literature (e.g. Allen et al. 1998); yield response factor Ky as a function of the 
development stage, determined from literature (e.g. Doorenbos and Pruitt 1997; Allen et al. 1998). 
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Kc estimation using NDVI 

One of the issues of the CROPIRR implementation is the estimation of the Kc crop coefficients. If they can 
be tabulated (Allen et al 1998) to have on overall overview of the Kc under an average climate, it cannot 
be used in operational concept where the actual Kc dynamic is dependent on soil properties, climatic history 
and farm management practices. Therefore, a method to estimate Kc from NDVI Hornbuckle et al., 2016 
after Trout and Johnson, 2007) was tested. Figure 12 depicts the decadal (10-day) values of Kc in 2019. 
The graph presents the Kc values compared to the estimated on the basis of NDVI from the satellite images 
of the examined parsley field. Because of the cloud cover, only a few values of satellite-based images were 
available (see D3.3). Except early growth in April and May, the values of Kc were comparable. Parsley is a 
crop with long emergence period (3-4 weeks) when the soil is not covered by plants. This time NDVI values 
are close to zero whereas physiological processes in plants take place.  

 

Figure 12. Decadal crop coefficients (Kc) courses for flat leaf parsley in 2019 actual values (blue line) 
and estimated remotely (satellite images from IrriSAT, red line). On X axis 1= 1st decade of April. 

Model evaluation 

We compared the daily measured values of soil water content in the root zone and two data sets of modelled 
values. The first one was the output of the modelling on the basis of irrigation time and doses used by 
farmer. The second one was the output of the model on the basis of irrigation time and doses estimated 
according to the 5-day weather forecast and depletion of available water content below a certain point. For 
evaluation purpose the following statistics were used: the root mean square error (RMSE), the mean 
absolute error (MAE), the r Pearson coefficient and per cent bias (PBIAS) (Table 4).  

These evaluation statistics are commonly used in environmental sciences to assess the agreement between 
simulated and observed data. RMSE and MAE are expressed in the units of the variable of interest (e.g., 
mm), while r Pearson is a dimensionless statistic and PBIAS is expressed as a percentage. According to 
Willmott (1982) the r Pearson is insufficient to well-define model performance and the author recommends 
RMSE and MAE as the best overall measures. The smaller are RMSE and MAE, the better is the fit between 
the values that are compared. MAE is less sensitive to extreme values than RMSE, but more appealing, 
because it avoids exponentiation. PBIAS is the percentage deviation of the evaluated data. It measures if 
the average tendency of the simulated data is larger or smaller than their observed counterparts. The low-
magnitude values indicate accurate model simulation.  

Results are displayed in Table 4 and Figure 13. The values of r Pearson are high, showing consistent 
variation in both simulated and observed soil moisture. The PBIAS indicates high difference between 
measured with sensors and modelling results, its negative values indicate model underestimation 
comparing to the sensor measured values. During the 35 first day, the soil root depth is small and the 
agreement between simulated and observed soil moisture is very good. The bias appears when the root 
depth is maximum (after day 35) and might be explained by errors in soil hydraulic properties and/or soil 
moisture calibration in the deeper layers. However, it is interesting to note that there is a good correlation 
between simulated and observed values demonstrating that the relative variations of soil moisture can be 
interpreted and used for irrigation recommendation even if soil hydraulic properties cannot be established 
accurately.  
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Table 4. Soil water content assessment in the leaf parsley root zone. 

Year Error estimator Evaluation terms 

  
sensor / model, 
farmer irrigation 

sensor / model,  
w. f. irrigation 

farmer irrigation /  
w. f. irrigation 

2019 r Pearson 0.928 0.935 0.945 
 MAE 22.57 17.85 4.95 
 RMSE 25.84 21.28 8.46 
 Pbias Moriasi -0.25 -0.26 0.07 

Explanations: w.f. – weather forecast 

 

 

Figure 13. Time courses of soil water content in the leaf parsley root zone (from 10 cm to 50 cm depth) 
measured by profile sensor (blue line) and modelled on the basis of actual farmer irrigation (red line) and 
weather forecast irrigation (green line); 1 - day 17 April 2019. 

Weather forecast accuracy 

The weather forecasts were verified (Tables 5 and 6). The temperature forecasts are close to the actual 
meteorological conditions, while precipitations remain more uncertain with a weak correlation but with 
rather low errors (<2 mm/d) due to the fact that days without rains are well forecasted. 
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Table 5. Precipitation forecast assessment. 

Year 
Error 
estimator 

Forecast terms 

  1 day 2 days 3 days 4 days 5 days 

2018 r Pearson 0.16 0.20 0.12 0.06 0.03 

 MAE 2.41 2.46 2.35 2.59 2.90 

 RMSE 5.48 5.47 5.56 5.83 6.16 

 Pbias Moriasi -0.25 -0.17 -0.34 -0.26 -0.13 

2019 r Pearson 0.31 0.39 0.41 0.22 0.13 

 MAE 1.25 1.21 1.28 1.56 1.89 

 RMSE 3.63 3.34 3.36 3.80 4.58 

 Pbias Moriasi 0.07 0.17 0.19 0.33 0.38 

 

Table 6. Temperature forecast assessment. 

Year 
Error 
estimator 

Forecast terms 

  1 day 2 days 3 days 4 days 5 days 

2018 r Pearson 0.67 0.67 0.67 0.68 0.65 

 MAE 2.63 2.68 2.71 2.72 2.90 

 RMSE 3.69 3.70 3.69 3.64 3.76 

 Pbias Moriasi 0.03 0.03 0.03 0.03 0.03 

2019 r Pearson 0.98 0.98 0.97 0.96 0.95 

 MAE 1.10 1.21 1.32 1.45 1.59 

 RMSE 1.32 1.47 1.62 1.81 2.05 

 Pbias Moriasi -0.04 -0.04 -0.05 -0.05 -0.05 

 

Conclusions 

Applicability. The method works well and can be used to determine the time and doses for irrigation. To 
be applied at the farm scale, the user (farmer) needs to know the soil characteristics (at least texture). To 
predict water demand the used model (method) needs good quality rainfall forecast or to build his own 
scenario of the forecast for operational planning of water needs (time and dozes) for irrigation. 

Robustness. The proposed and tested model requires standard input data (meteorological, soil type and 
soil hydraulic properties, crop species).  The model uses plant parameters summarized in decadal crop 
coefficients (e.g. crop parameter) and root depth. It provides average estimates for a wide range of 
soil/environmental conditions. The model can be used for operational (current and short-term forecast) 
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determining the water needs of various crops and grasslands. However, to have suitable results at field 
scale, a calibration soil and crop parameters is recommended to account for specific field conditions. 

The weakness of the method is that root depth is not always well established. In case of parsley, we have 
not carried out investigations confirming the real depth of leaf parsley. It was assumed on the basis on 
literature, discussion with farmers and rare sampling plants in the field.  On the other hand, parsley as all 
other irrigated crops has a shallower root system than not irrigated crops.  

Once correctly determined, root depth is an important parameter in our method to increase irrigation water 
use efficiency. The strength of the method is also possibility for the users to enter the custom value of 
efficiency of the used irrigation system according to their experience. Estimation of Kc on the basis of 
actual development stage with support of actual remote sensing data is the improvement comparing to 
the existing decadal values of the coefficient. Better (close to real growth stage conditions) estimation of 
Kc had a positive impact for modelling results. 

 

2.5 The IRRICROP method developed by UNIFI and CREA(Italy) 

2.5.1 Rationale and aims 
IRRICROP provides optimal approaches for dynamic assessment of crop water demand based on sequential 
assimilation of remote sensing (RS; Sentinel-2A) observations in a crop growth model. The aim was to 
develop rules for optimum water management under climate variability and uncertainties in the 
Mediterranean, especially in Italy. IRRICROP allows farmer’s associations, regional government, land and 
water reclamation authorities to schedule irrigation in a more rational way. In OPERA the selected irrigated 
crop was processing tomato irrigated using drip systems. The optimization is foreseen at water 
management level, through the availability of dynamic information about the crop evapotranspiration and 
its trend based on pedo-climatic conditions. 

In IRRICROP, the fractional cover (fc) estimated by Sentinel-2 is sequentially assimilated into the AquaCrop 
model, by direct insertion, in place of the simulated canopy cover (CC). The sequential direct insertion is 
applied under the assumption that a continuous update of one crop model state based on remote 
observations can reduce the biases induced by the model simplifications of the processes and 
environmental conditions influencing the crop growth dynamics. Compared to the already adopted 
methodologies based on remote sensing as delivered by the irriSAT service delivered by ARIESPACE, the 
use of the model introduces the estimation of the soil water balance which, in turn, affects the crop 
transpiration. In this way, the dynamics of water losses are better reproduced allowing a more precise 
determination of the actual water requirements. In this sense, the innovation will be the availability of 
information to farmers about the real water requirements of their crops and the availability of the same 
information together with real data about water use to land reclamation consortia. The IRRICROP method 
is expected to lead to a more efficient water crop water use in the field, a more efficient water management 
at catchment level and a more correct distribution of water among different users (and consequently the 
pricing policy). 

For implementing the described method, the following information is necessary: 

• Crop: sowing/transplant date, plant density, plant phenology, canopy cover, rooting depth, 
biomass production, yield, irrigation supplied 

• Soil: soil characteristic (texture, bulk density, organic matter, composition, moisture and hydraulic 
properties) 

• Climate: weather variables for calculating ET0 and model run (rainfall, air temperature, relative 
humidity, solar radiation, wind speed)  

• Satellite: Sentinel-2A imagery for crop state assessment of study areas. 
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2.5.2 Development and results 
 

Biophysical variables estimated from Sentinel 2 

The Multi Spectral Instrument (MSI) on board of Sentinel-2A/2B captures data at 10, 20 and 60 meter of 
spatial resolution over 13 spectral bands with a very high temporal resolution of five days at the equator. 
Individual Sentinel-2 granules Level-1C (processed at top-of-atmosphere reflectance), were acquired from 
Copernicus Open Access Hub (https://scihub.copernicus.eu/), already ortho-rectified in UTM/WGS84 
(image tiles of 100x100 km2). The information gathered by Sentinel-2 system (orbit, altitude, date 
accuracy, and viewing directions of all detectors) is exploited for geolocating all Sentinel-2 pixels with an 
accuracy of about 11 m for about 97 % of the cases, which is about the size of one Sentinel-2 pixel. The 
standard need for multi-temporal registration errors is 0.3 pixels, and the current performances show that 
for more than 50% of the cases, the performance does not meet that requirement. The resolution is 
estimated to be 3 times the registration error, thus the resolution Sentinel-2 time series is around 30 m.  

Level-1C products were processed into Level-2A - Bottom-of-Atmosphere (BoA) reflectance - data using 
the ESA’s Sen2Cor v2.5.5 tool. Sen2Cor tool performs the atmospheric, terrain and cirrus correction of 
Top-Of-Atmosphere Level 1C input data, and creates Bottom-Of-Atmosphere, optionally terrain and cirrus 
corrected reflectance images; additional, Aerosol Optical Thickness, Water Vapor, Scene Classification Maps 
and Quality Indicators for cloud and snow probabilities.  

In order to obtain homogeneous and comparable products as time series, all value-added products (LAI, α 
and fc) are calculated based on atmospherically corrected Level-2A data. In order to obtain homogeneous 
and comparable products as time series, all value-added products (such as LAI, α and the fractional 
vegetation cover fc) are calculated from Level-2A images, which include the atmospheric correction 
obtained by means of Sen2Cor v2.5.5 algorithm published by ESA.  

LAI and fc are calculated by S2ToolBox, LAI and fc being obtained by an Artificial Neural Network (ANN) 
algorithm, trained by using radiative transfer simulations from PROSPECT and SAIL models, and tailored 
for Sentinel-2 data. A detailed description of the algorithm can be found in Weiss. The algorithm requires 
eight Sentinel-2 spectral bands (B3-B7, B8a, B11 and B12) at 10 and 20 meters (pixel size), which are all 
resampled to 10 m to derive LAI and fc. Experimental studies have shown the accuracy of this approach 
for LAI estimation in different environments and crops. In this study, average and variance of LAI and fc 
at parcel scale were assessed by taking a minimum of 50 pixels falling within each parcel, after excluding 
pixels affected by boundary effects or cloudiness, according to the quality indicator provided by S2ToolBox. 

Implementation of the aquacrop model 

AquaCrop is a crop water productivity model developed by the Land and Water Division of FAO in 2009. It 
simulates yield response to water of crops and it is mainly used to increase water efficiency practices in 
agricultural production.  

AquaCrop simulates crop yield in four steps: crop development, crop transpiration, biomass production and 
yield formation. It calculates the daily soil water balance and divides evapotranspiration into soil 
evaporation and crop transpiration. AquaCrop describes the foliage development of the crop by implements 
the canopy cover (CC), which is that is formally equivalent to the fractional cover (fc) estimated by 
Sentinel-2 imagery, i.e. it is the fraction of soil surface covered by the green canopy, to describe the foliage 
development of the crop, differently from majority of crop models which use LAI. Hereinafter, we use the 
two terms canopy cover (CC) and fractional cover (fc) just to distinguish the two variables, respectively 
derived with AquaCrop and Sentinel-2 imagery. 

Transpiration is a function of CC, while evaporation is proportional to the area of soil not covered by 
vegetation. The CC is multiplied by reference evapotranspiration (ETo), determined by the FAO Penman-
Monteith equation, and the crop coefficient (Kc) to calculate potential crop transpiration. Actual 
transpiration (Ta) is calculated starting from the potential one by accounting for water stress. Then, Ta is 
used for the calculation of crop biomass though its multiplication with water productivity normalized for 
the climate. By using a harvest index (HI), crop yield is obtained by the biomass. To describe the effect of 
water stress, the model considers different thresholds of water available to the root zone.  
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In this study, a limited number of AquaCrop parameters were partly calibrated with field observations, 
including management information: transplant dates and densities, flowering date and duration, starting 
of senescence, maturity, and final yield were used for local calibration of the model. For simulating 
irrigation, the model was set in net irrigation requirement mode, which estimates the crop water 
requirement based on a selected threshold of allowed root zone (water) depletion (RZD). In order to 
reproduce the irrigation method adopted by the farmer, drip irrigation was simulated to ensure that RZD 
was always above 50% of the readily available water (RAW). 

The proposed method for assessing crop water requirements was to integrate Sentinel-2 crop derived 
biophysical parameter in AquaCrop. In particular, the fractional cover (fc) estimated by Sentinel-2 has 
been sequentially assimilated into AquaCrop, by direct insertion, in place of the canopy cover (CC) 
simulated by the model. The sequential direct insertion is applied under the assumption that a continuous 
update of one crop model state based on remote observations can reduce the biases induced by the model 
simplifications of the processes and environmental conditions influencing the crop growth dynamics. 

Crop CC simulated by AquaCrop along the growing season and the fc values measured by satellite were 
compared in Figure 14. 

 

 

 

 

 

 

Figure 14. Canopy cover of tomato simulated by AquaCrop, after calibration with field data (line) and 
corresponding fractional cover values (dots) retrieved by Sentinel-2 imagery during 2017 (left) and 2018 
(right) growing seasons, with corresponding standard deviations. 

The growth of the green canopy simulated by the model was compared with the fc values observed by 
IRRISAT. In both seasons (2017-2018) the simulated growing curve fitted well with the satellite 
observations, although an underestimation for the initial canopy cover (late April-early May) and an 
overestimation during the last part of the growing season (July) was observed (Figure 14).  

The differences between observed (Sentinel2) and simulated results (Aquacrop) were statistically analysed 
by means of Pearson Correlation Coefficient (r), Root mean square error (RMSE%), Coefficient of variation 
of (normalized) root mean square error CV(RMSE%), Nash-Sutcliffe model efficiency coefficient (EF), and 
Willmott index of agreement (d) (Table 7) 

Integrating Sentinel-2 imagery with crop growth model such as AquaCrop, can be an effective strategy 
for assessing crop water requirement in the initial and development stages of the crop, as well as for 
identifying the senescence stage. Further, since the satellite imagery contains spatial information, the 
integration into a crop model can help in assessing crop water requirements at the field or higher scales, 
i.e. at territorial level. 

Table 7. Evaluation of canopy cover simulation results: number of observations/simulations (n), Pearson 
Correlation Coefficient (r), Root mean square error (RMSE%), Nash-Sutcliffe model efficiency coefficient 
(EF), Willmott index of agreement (d). 
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The impact of assimilating yield and evapotranspiration is given in Table 8. AquaCrop parameters were 
calibrated to obtain the best fit between field observations and simulations, both in 2017 and 2018. 
AquaCrop simulated yields were 7.23 and 7.60 t/ha (dry weight) in 2017 and 2018, with an error of 0.42% 
and 3.40%, respectively. The use of assimilated data provides comparable results than with the calibrated 
simulation with an overestimation of the yield in 2017 and a good match in 2018. The overestimation in 
2017 is due to the beginning to the higher FC at the beginning of the cycle. A calibration of FC forced model 
might improve the simulations. 

Table 9. Crop and water balance variables (Tr: crop transpiration, E: soil evaporation, ETp: potential 
evapotranspiration).  

 

Conclusions 

The method can be considered robust as it is based on the integration of two validated tools already 
adopted for irrigation management, remote sensing and crop modelling. Nevertheless, the method should 
be validated for a longer period of time (at least three years) and on more irrigated crops in order to make 
it more robust. The applicability depends on different factors, but probably the most important is the 
availability and the quality of data for running the simulation model. In fact, besides the agrometeorological 
information, which can be derived from existing or ad-hoc weather stations or provided by databases as 
for IRRISAT, the model also requires a local calibration and a validation based on specific crop parameters 
and soil characteristics. Therefore, a period of time is necessary for calibrating and testing the system 
before its operational application. 

The strength is mainly related to the fact that, compared to the already adopted methodologies only 
based on remote sensing, the use of the model introduces the estimation of the soil water balance which 
in turn affects the crop transpiration. In this way, the dynamics of water losses are better reproduced 
allowing a more precise determination of the actual water requirements. On the other hand, the use of 
satellite information, which has a considerable spatial coverage, allows the upscaling (up to territorial) of 
the application. In this way, the method can be used from farm to territorial level, thus responding both 
to farmers needs of optimizing irrigation and crop productivity, and to water managers to optimize water 
allocation and manage water shortages. 

Concerning weaknesses of the developed method, a simple direct insertion has been applied in this study 
for assimilating satellite canopy cover into AquaCrop, which does not guarantee an optimal model-data 
integration. Based on that, more advanced data assimilation techniques should be tested, accounting for 
the structure of the model state and observation errors. 

2.6 Irrigation requirements at the territory level developed by INRA 
(France) 

2.6.1 Rationale and aims 
 

The goal of the methods is to provide irrigation need maps at the field level and different temporal terms 
(meteorological forecast for the coming weeks, over the irrigation period using climatology (past and 
future), seasonal forecast). The main expected users are the water managers that have to implement 
decisions in the water allocation to the farmers (amount of water, distribution calendar). But a fair 
evaluation of the water needs will be also appreciated by the individual farmer by providing an objective 
basis to decide restrictions that usually arise tensions. 
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The proposed method is a suite of models that lead to estimate on every field of the area the required 
irrigation water amount. This led to the following steps: 

• Step 1: detect irrigated crop using the temporal series of satellite images. We will start with 
existing land use product as a benchmark and then improve irrigated crop detection using the 
characteristics of the Sentinel satellites: 1) frequent observations provide time series able to 
capture dynamic patterns of the vegetation development, 2) spatial resolution able to address 
small fields, which are frequent in irrigated area, and 3) rich spectral content useful to characterize 
plant traits (LAI, faPAR, vegetation water content, soil moisture …). The challenge is then to 
identify patterns in the temporal evolution of satellite vegetation indices that improves the 
identification of irrigated crop and if possible, the cropping system variants that lead to different 
requirements type of trees, grassy inter-rows, tree arrangement in the fields).  

• Step 2: set up the water estimation modelling framework. The simulator is based on two 
components: a simulation case generator to address the spatial variability of soil, climate and 
agricultural practices, and a crop simulator to represent the crop behaviour and the assessment 
of the water budget.  

o The simulation case generator: it is a pre-processing module that will prepare the 
different crop simulations cases. For every simulation unit (here a field) it is necessary to 
determine crop type, crop characteristics (variety...) and agricultural practices (irrigation, 
fertilization...), soil characteristics, and climatic data able to compute the potential 
evapotranspiration ET0 as determined by the FAO method (Allen et al., 1998); 

o The crop simulators differed from one crop to another. The STICS crop model 
(Brisson et al., 1998, Brisson et al., 2008) will be privileged when possible for instance 
irrigated grass, sunflower and wheat are simulated using STICS in the current simulator). 
For the other crops (orchard, vegetable, garden market, olive tree, vine) we currently use 
a simplified approach based on the determination of a crop coefficient varying for each 
crop along the cultural season (Kc ET0, FAO56 method) and the potential 
evapotranspiration (ET0). 

The simulator was already developed in previous projects over the Crau Area. The main innovations 
developed in the project are related to step 1 mentioned before: 

• Developing methods to map irrigated fields using the Sentinel 2 data over the two studied sites. 
• Characterization of the vegetation development of the main crops through the annual cycle thanks 

to the satellite short revisit time (<5d), from the analysis of the temporal profiles of biophysical 
variables such as LAI, or spectral vegetation indices derived from Sentinel 2. 

• Develop a method to identify flooding irrigation spatial patterns to assess the required amount of 
water to perform the irrigation. 

Inputs of the simulator have already been presented in D.2.1. These covered four domains that are the 
climate, the soil hydraulic properties, the land use and the agricultural practices. Concerning the new 
development, the inputs are series of Sentinel 2 images (atmospherically corrected and georeferenced, 
with a cloud mask downloaded from the THEIA platform https://theia.cnes.fr/atdistrib/rocket/#/home), 
and shapefile with field boundaries, an urban and forest masks, learning and validation observation points 
(where the vegetation cover is known). 

2.6.2 Development and results 
Mapping irrigated orchards and vineyards 

Various crop classification methods exist based on the use of different spectral bands reviewed by (Cheng 
et al., 2017; Orynbaikyzy et al., 2019) but very few have concerned orchards and vineyards both because 
of the complexity of these heterogeneous crops and associated agricultural practices and the spatial 
resolution of most of the considered satellites not fine enough (Kozhoridze et al., 2018). Since the arrival 
of the new Sentinel 2 data, numerous papers have explored the potential of the combination of spectral 
bands acquired at high frequency to map cultivated crops (Caiserman et al., 2019; Ferrant et al., 2017). 
During the OPERA project, as a lot of ground observations have been collected in 2018 (90 points) and 
2019 (more 200 points), to which are added the surveys at field scale obtained beside 7 farmers, including 
more 150 fields described for the main agricultural practices, different strategies of supervised 
classifications were evaluated by varying the learning and validation dataset, the number of considered 
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dates, spectral bands and the classification methods (support vector machine, maximum likelihood and 
random forest). Figure 15 summarizes the main steps of the processing chain. 

 

Figure 15. Main steps for land use classification based on ground observation and Sentinel images. 

The choice of the relevant dates and spectral bands (or spectral indices) useful for classification resulted 
from a previous analysis of the temporal profiles of the spectral signatures of the main land-use classes. 
As shown in Figures 16 and Fig 17, the spectral responses of orchards and vineyards were close, whatever 
the year. Orchard NDVI appeared slightly higher than for the vineyards, mainly because, the vegetation 
development is more important for orchard than for vineyard and more orchards are also irrigated 
compared to vineyards (more wine than wine table). On these profiles, the cultural practices of the leaf 
thinning for vineyards and the cut of some orchard branches can be clearly detected in July. Different 
combinations of spectral bands have been explored particularly using SWIR and NIR bands, in order to 
better differentiate these crops and irrigation practices, but the signatures were not significantly different. 
For orchards, distinction between irrigated fields and non-irrigated field is clear while with vineyards little 
differences were observed, with higher NDVI in the non-irrigated case. This unexpected pattern can be 
explained by the fact that vineyards irrigation was done on fields dedicated to table grape which a very 
different structure than un-irrigated fields dedicated for wine production.  

Based on selection of the acquisition time, an implementation of the classification led to the map given in 
Figure 18 with scores reported in Table 10. 

 

 

Figure 16. NDVI over time (DOY) on two type of field (orchard in blue, and vineyard in green) for three 
different years. 
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Figure 17. NDVI over time (DOY) on two types of agricultural fields (irrigated field in red, and non-
irrigated field in blue) for three different years. 

 

 

 

Figure 18. Supervised classification by likelihood method obtained in 2018 on the Entrechaux site using 
the following Sentinel spectral bands: B2-3-4-8-11 acquired at 4 dates: 26/03/2018, 25/05/2018, 
17/07/2018, 26/08/2019. 

 

Table 10. Accuracy of the classification 

 

For the Crau case study, the best results in terms of LU classification were obtained with the SVM 
method (K-index 0.78). Figure 19 shows the resulting land use classification. 

Total 

accuracy 

Irrigated 

orchard 

Non-irrigated 

orchard  

Non-irrigated 

vineyard 

Irrigated 

vineyard 

62% 80% 13% 50% 24% 
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Figure 19. Classification results made on the CRAU area.  

The evaluation of the classification was displayed in Table 11 which displayed good accuracy. 
Classification made using band are slightly better than that using spectral indices. Better results are 
obtained in 2017 thanks to the possibility of having more dates after the launch of Sentinel 2b. 

Table 11. Evaluation of the accuracy of land use classification using the SVM method. 

Type of classification Overall accuracy % Kappa index 

SVM 2016 (band) 75 0.8 

SVM 2017 (band) 84 0.71 

SVM 2016 (indice) 76 0.72 

SVM 2017 (indice) 80 0.75 

 

Determining flooding patterns in the Crau site 

 

The amount of water required per unit area depends on the distance to be covered by the flooding front to 
cross the field (hereafter to as the length of the irrigation unit) and thus allow the field being fully irrigated. 
Optimally, the shortest this distance is, the lowest amount of water is required. However, to save working 
time, farmers prefer to irrigate their field along the largest distance in order to have longer irrigation 
sequences. To determine the amount of water used to irrigate it is therefore important to characterize the 
length of an irrigated unit. The way to characterize such a length is to capture an irrigation event during 
which the field is partially flooded. The comparison of the shape of the flooding area and the geometry of 
the field give us an indication of the flooding direction (see Figure 20). The goal in OPERA was then to 
develop a method able to distinguish within a field flooded area from the non-irrigated area.  
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Figure 20. Schematic scheme to determine flooded irrigation patterns. 

  

Figure 21. Scatterplot between rsbu1= NDVI (NDVI is the Normalised Difference Vegetation Index) and 
Sentinel 2 Band 11 reflectance centred at 1613 nm. Each point corresponds to pixels classified in 
irrigated grassland for different dates though the growing season. The redline corresponds to a threshold 
below which the surface is assumed to be flooded. 

 

A few studies deal with spectral signature of flooded vegetation on grass. With rice, it has been shown that 
the LSWI (Land surface water Indicator) indicator involving the mid-infrared spectrum is suitable to 
detected flooded rice field while radar measurement made by Sentinel 1 can be a suitable approach thanks 
to strong specular reflexion on the free water plan. Many tests were done with radar measurement without 
leading to conclusive results. As the matter of facts speckle effects might be too strong with respect to 
signal induced by the free water plan (the specular reflexion being partly hidden by the scattering on the 
vegetation above this plan. The use of the mid-infrared was much more promising with a clear drop of the 
reflectance when the surface is flooded (Figure 21) 

The results displayed in Figure have shown there is a threshold in B11 reflectance, below which the surface 
can be considered as flooded. This threshold depends on the plant development (NDVI in the Figure) but 
appears less clearly with well-developed vegetation covers (NDVI > 0.7). The drop in B11 reflectance can 
be explained by the contrast in soil moisture and its impact on the mid-infrared reflectance, flooded soil 
being saturated in contrast with the unflooded part of the field which is drier. Note that the presence of 
free water has little effect on the soil reflectance since water is almost transparent in that wave length 
band.  
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The equation to obtain this threshold line is the following: 

TRB11S2=3617-3083∙NVDI 

where TRB11S2 is the threshold given in numerical count (NC). Applying such a threshold led to determine 
a flooded/not flooded status as displayed in Figure 22. After comparing the reflectance to the threshold in 
a given field, is declared as being irrigated if a minimum of 10 pixels is found as flooded, if the spatial 
localisation of the flooded pixels belongs to patches and if no rainfall larger than 20 mm were encountered 
during the last 3 data. Such filtering is required to avoid artefacts has the border effect or remaining 
saturated area. 

 

Figure 22. Detected flooded pixel (in green) using the TRB11S2 threshold to flag the pixels. The fields are 
represented by the polygons. In each polygon a buffer of 20m was set to remove border effects. 

 

We can see in Figure 22 the flooded pattern with a clear vertical structure (South to North) with a strip 
that was fully irrigated and an adjacent strip in progress. The images show clearly a transversal irrigation 
with several sectors. Moreover, we can see that the two fields were merged and irrigated together. Note 
that an assessment of a method based on LSWI was done. The sensitivity of the indicator was less sensitive 
to flooding than using the B11 directly likely due to the combination with the near-infrared band and the 
normalised difference. However, the method based on the B11 was more sensitive to cloud effects that are 
partly mitigated in normalised indices. This feature will be further discussed. 

The evaluation was done on three farms where irrigations were registered over 2016 (The first year with 
sentinel 2 acquisition) and 2017 (2018 irrigation calendars were not ready during the study). Results are 
displayed in Table 3. 
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Table 12.  Detection of irrigation events (Positive means that a field was identifiers has been irrigated). 

Farm Number of 
field 

year True positive False positive Rate of good 
determination 

Boisvert 55 2016 7 0 100% 

2017 11 2 85% 

2018 17 1 95% 

Suffren 47 2016 4 0 100% 

2017 15 2 88% 

2018 18 2 90% 

Aqueduc 23 2016 7 0 100% 

2017 16 1 94% 

2018 19 3 86% 

Merle 9 2016 10 1 91% 

2017 19 1 95% 

2018 31 4 87% 

 

Results displayed in Table 12 have shown a good skill in detecting irrigation events when observed. 
However, the number of irrigated fields during a year remains small in comparison to the total number of 
fields (between 17 and 34% in 2017 when both Sentinel 2a and 2b were operating). Capitalization of the 
results over several years will likely lead to better spatial coverage. Moreover, A method to analyse the 
shape of the flooded patch in order to determine the direction of the flooding front still has to be developed. 
At the end of this process, we expect having only a partial characterization of the area only. Therefore, to 
upscale the results to all irrigated grass fields a stochastic model will be still necessary. But the information 
given by our method will provide much more reliable statistics thanks to a large number of fields 
documented by our method 

As mentioned in the previous section, the method is sensitive to atmospheric conditions. It was found that 
the cloud mask is not enough to flag pixel affected by the atmosphere. We found with some types of clouds 
that the pixels located at the border of the clouds are affected by the atmosphere. When processing a large 
series of images, filtering pixels is then an important issue. In our case we have expanded the cloud mask 
over a 1 km distance. 

Conclusions 

Orchard and vineyard detection. The discrimination between the orchards and vineyards on the 
Entrechaux site has shown worse results than in the Crau region for the different land use map tests. The 
best score was around 68% of accuracy. The main reasons were the complexity of the crops (small fields 
on a topography more pronounced, row plants with or without grass in inter rank, various tree ages more 
and less vigorous, and drip irrigation not easy to detect). Nevertheless, thanks to the large dataset 
collected during this project, we have improved the existing maps on this area. The distinction of the 
irrigation varied a lot according to the number of the learning points and the land use classes analysed. 
The best performances were obtained for the irrigated orchards globally better estimated (up to 80%) than 
the irrigated vineyards (max 50%). More investigations are needed to improve these first results. The 
analysis of Sentinel 1 VV and VH polarisations and other finer resolution images (Pleiades or drone images?) 
are planned in the next months to go further.  

Flooded irrigation pattern detection. The developed method is tailored to answer a very specific 
question e.g. the detection of the flooded pattern associated with flooded irrigation techniques. There is 
still a need to develop a shape pattern analysis to determine the direction of irrigation. Once this will be 
achieved we expected to have a much larger data base to develop stochastic models to distribute length 
of the irrigation unit in every field. Detection of the flooded area can be further useful to detect rice flooding 
or flooded soils in winter 
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3 Conclusions 
The innovations introduced in the OPERA project mainly concern the estimation of crop water needs for 
optimal irrigation and a good distribution of water resources at the scale of a territory (irrigated sector, 
catchment area) in shortage conditions. The assessment of water quantities is generally made to cover 
crop water needs in optimal conditions. The issue of deficit irrigation is only addressed in the method 2 
developed by IRNAS-CSIC on olive orchard irrigation. Methods to address deficit irrigation must then be 
based on an assessment of the consequences of water shortage on production which remains challenging. 
In the case of the IRNAS-CSIC method, this was done by an ecophysiological approach that takes the 
coupling between photosynthesis and transpiration into account. 

Among the innovation levels considered at the time of the project's submission (remote sensing, crop 
modelling, using meteorological forecast data and in situ sensors), sensor-based irrigation management 
was the least developed. This approach has been widely used in the past and has not been the subject of 
recent technological breakthroughs. Existing methods still face the problem of the spatial 
representativeness of sensors (spatial variation; calibration) and the constraints of sensor implementation. 
The reduction in sensor costs and the progress made in connecting these sensors to other information 
(e.g., models) could support new innovations in the future.  

On the other hand, OPERA has been able to benefit from a technological breakthrough offered by the 
SENTINEL satellite earth observation mission, which makes it possible to develop new applications based 
in particular on the high temporal frequency (potentially every 5 days). In addition, the exhaustive spatial 
coverage and free access to images offer guarantees for the development of operational services. Most of 
the methods are based on the dynamics of leaf cover allowing:  

• to directly characterize the water requirements by linking the cultural coefficient kc to the 
vegetation index (method 1 - NDVI-CW; Evenor, Spain); 

• assimilate the LAI in the AQUACROP model to better understand the development of the cover 
simulated by the model (method 5 – IRRICROP; UNIFI, Italy);  

• improve the classification of irrigated cropping systems by analysing foliar development over the 
entire cropping cycle (Method 6 - INRA, France). In this method, an original development was 
made to determine some characteristics of water supply in the case of gravity irrigation. 

The use of soil-crop modelling is the second innovation level. Modelling makes it possible to synthesize 
climate, agricultural practices and soil and thus to take the role of soil into account, which plays a buffer 
role against climate variability through its water storage capacity. In addition, because crop models are 
climate-driven, the soil-crop are well suited to integrate weather forecasts. The main difficulty of these 
models remains the determination of the input parameters, which are numerous and can have a strong 
impact on the results. However, the development of spatial product soil, cropping systems, and climate, 
all being reinforced by the widespread use of remote sensing, can make it possible to implement them 
within an operational framework that requires parameters to be determined everywhere. In the OPERA 
project, methods 3 (WENR, the Netherlands), 4 (ITP, Poland), 5 (UNIFI, Italy) and 6 (INRA, France) are 
all based on soil-crop models. Their implementation in the project shows on some verification points that 
the models satisfactorily simulate the dynamics of water in the soil. The challenge now is to verify in a 
much more exhaustive way the robustness of such models implemented with easily accessible spatial 
information layers. Such verification is necessary to give credibility to the results and thus convince farmers 
to use such approaches. We can note the intermediate approach developed in method 2, where water 
needs and the consequence of hydric stresses are represented by a mechanistic model of stomatal 
conductance while soil control is indirectly derived from observations given stress sensors such as the 
measurement of the turgidity pressure of certain plant organs (stem, trunk, fruit). 

Finally, we can highlight the use of weather forecasts that are now easily accessible at spatial scales of 
interest. While potentially all the methods developed in OPERA are likely to use them, the quality of these 
forecasts and the uncertainties apprehended by ensemble approaches have only been analysed within the 
framework of methods 3 (WENR) and 4 (ITP). These temperate climate assessments highlight uncertainties 
about poorly predicted precipitation over a few days. The representation of the uncertainties generated 
using ensemble forecast illustrates the uncertainties and their degradation when considering longer time 
windows. However, the median seems to be a reasonable estimator. 
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Perspectives: the work carried out in WP2 was focused on method development and a proof-of-concept. It 
is now necessary to build systematic evaluation strategies to demonstrate their robustness and improve 
their credibility with potential users. One of the main areas of progress lies in the combination of 
model/remote sensing/sensors. 
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